Abstract: Combinatorial shifting is a tool used to prove results from extremal set theory such as the Erdős-Ko-Rado theorem. Combinatorial shifting applies a step-by-step procedure to replace a system with a
somewhat simpler (shifted) system.
There are alternate algebraic approaches to shifting. For example, in recent work, I’ve shown how the Borel Fixed-Point theorem can in certain settings replace (in one step) a system with a shifted system.
In this talk, I’ll connect the combinatorial shifting approach with the Borel Fixed-Point approach, by showing how to realize the step-by-step procedure of combinatorial shifting with a limiting
procedure of actions by 1-parameter matrices.
The seminar will be broadcasting via Zoom through the following link:
Join Zoom Meeting
https://upr-si.zoom.us/j/85914318577?pwd=cnFJcmg2ZEZkbFhpeG1VYk0veHp2Zz09