Canonical double cover BX of a graph X is the direct product of X with K_2 (the complete graph on two vertices). Automorphisms of the base graph X naturally lift to automorphisms of BX. In addition, there is an obvious involutory automorphism of BX swapping the bipartition sets. Expected automorphisms of BX are those that can be obtained by combining the above two types, and generate a group isomorphic to Aut(X) × S_2. If BX has only the expected automorphisms, then X is called stable, and it is called unstable otherwise. Characterization of stable graphs is an open problem, even when restricted to special graph classes like circulant graphs. In this talk, I will present several constructions of unstable graphs and characterizations within certain graph families, with special emphasis on circulant graphs. I will show the connection of this problem with Schur rings.
Everyone is welcome and encouraged to attend!