Let \G=\G(A) denote a simple strongly connected digraph with vertex set X, diameter D, and let \{A_0,A:=A_1,A_2,\ldots,A_D\} denote the set of distance-i matrices of \G. Let \{R_i\}_{i=0}^D denotes a partition of X\times X, where R_i=\{(x,y)\in X\times X\mid (A_i)_{xy}=1\} (0\le i\le D). The digraph \G is distance-regular if and only if (X,\{R_i\}_{i=0}^D) is a commutative association scheme. In this paper, we describe the combinatorial structure of \G in the sense of equitable partition and from it we derive several algebraic characterizations of such a graph.
Among else, we prove that the following (i)–(iii) are equivalent.
(i) \G is a distance-regular digraph.
(ii) \G is regular, has spectrally maximum diameter (D = d) and both matrices A^\top and the distance-D matrix A_D are polynomial in A.
(iii) (X,\{R_{\ii}\}_{\ii\in\Delta}) is a commutative D-class association scheme, where \Delta=\{(\partial(x,y),\
This is work in progress (it is joint work with Giusy Monzillo).
We look forward to seeing you there!