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Minimum Vertex Cover 

G = (V,E) - a finite undirected graph.  

U  V is a vertex cover of G if for every edge 

e of G, U contains at least one vertex of e.  
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Minimum Vertex Cover 

Problem [GT1] of [Garey, Johnson, 1979]: 

INSTANCE:  Graph G=(V, E), positive 

integer K ≤ |V|. 

QUESTION: Is there a vertex cover of size K 

or less for G?  



Vertex cover versus other problems 

Observation.  

(1) U is a vertex cover of G   

V – U is an independent vertex set in G.  

(2) U is an  - maximal independent set in G 

 U is an independent dominating set in G.   
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Minimum Vertex Cover 

Theorem [D. König, 1930]  

In a bipartite graph B  (X,Y, E),  

minimum size of a vertex cover   

maximum size of a matching.  
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Maximum Independent Sets 

G = (V,E) - a finite undirected graph,  

w - a vertex weight function on V.  

U  V is stable or independent if all vertices 

of U are pairwise nonadjacent.  

(G)  max size of a stable vertex set in G  

w(G)  max weight of a stable vertex set in G  



Maximum Independent Set 

Problem [GT20] of [Garey, Johnson, 1979]: 

INSTANCE: Graph G=(V,E), integer K. 

QUESTION: Does G contain an independent 

set of size K or more?  

Let MIS (MWIS, resp.) denote the unweighted 

(vertex-weighted, resp.) problem.  



Exact Cover by 3-Sets (X3C) 

Problem [SP2] of [Garey, Johnson, 1979]: 

INSTANCE: A finite set X with | X |  3q and a 

collection C of 3-element subsets of X. 

QUESTION: Does C contain an exact cover 

for X, that is, a subcollection D of C such that 

every element of X occurs in exactly one 

member of D?  
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Efficient domination 

Let G  (V,E) be a finite undirected graph.  

A vertex v is dominated by itself and its 

neighbors, i.e., v dominates N[v].  

[Bange, Barkauskas, Slater 1988]:  

D is an efficient dominating (e.d.) set in G if  

(1)  it is dominating in G and  

(2)  every vertex is dominated exactly once. 



Efficient domination 

Efficient dominating sets in G are also called 

independent perfect dominating sets. 

Let G2   (V, E2) with xy  G2  if the distance 

between x and y in G is at most 2. 

Fact. Let N(G) denote the closed neighbor-

hood hypergraph of G. Then: 

G2  L(N(G)) holds. 

 

  



Efficient domination 

Fact.  The following are equivalent for D  V: 

(1) D is an e.d. set in G.   

(2) D dominating in G and independent in G2. 

(3) the closed neighborhoods N[v], v  D, are 

an exact cover of N(G). 

Corollary. G has an e.d.  N(G) has an exact 

cover. 
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Efficient Domination (ED) Problem  

INSTANCE: A finite graph G  (V, E). 

QUESTION: Does G have an e.d. set? 

Theorem [Yen, Lee 1996]  

The ED Problem is NP-complete for bipartite 

graphs and for chordal graphs.  

Proof by simple reduction from X3C: 
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Efficient domination 

Theorem [Lu, Tang 2002]  

The ED problem is NP-complete for chordal 

bipartite graphs.  

(proof by complicated reduction from 1-in-3 

3SAT) 



Efficient domination 

Recall: D is an efficient dominating set in G 

 D is dominating in G and independent in 

G2.  

Let w(v): |N [v]|. Then:  

(i)  D dominating in G  |V |  w(D).  

(ii)  D independent set in G2  w(D)  |V |. 

   



Efficient domination 

Recall:  w(v): |N [v]|. 

Fact 1 [Leitert, 2012]  

D is an e.d. set in G  D is a minimum 

weight dominating set in G with w(D)  |V |. 

Fact 2 [Leitert; Milanič, 2012]  

D is an e.d. set in G  D is a maximum 

weight independent set in G2 with w(D)  |V |.   

   



Efficient domination 

Corollary. Let C be a graph class. If the 

MWIS problem is solvable in polynomial time 

for G2 , for all G  C, then the ED problem is 

solvable in polynomial time on C.  

Examples:  

dually chordal graphs: squares are chordal.  

AT-free graphs: squares are co-comparability.    



Efficient domination 

Corollary. The ED problem is solvable in 

polynomial time for dually chordal graphs and 

thus also for strongly chordal graphs.  



Efficient domination 

Open [Lu, Tang 2002]  

Complexity of ED for convex bipartite graphs 

and for strongly chordal graphs.   

Recall:  

G strongly chordal  G dually chordal    

G convex bipartite  G interval bigraph  

                                G chordal bipartite     

    

  



Efficient domination 

Theorem [Bui-Xuan, Telle, Vatshelle, 2011] 

If for a graph class, boolean width is at most  

O(log n) then the Minimum Weight 

Dominating Set problem can be solved in 

polynomial time.  

Theorem [Keil, 2012] Boolean width of 

interval bigraphs is at most 2 log n. 

 



Efficient domination 

Corollary.  

For interval bigraphs, the ED problem can be 

solved in polynomial time. 

Recall:  

G convex bipartite  G interval bigraph     



Efficient edge domination 

[Grinstead, Slater, Sherwani, Holmes, 1993]: 

M  E is an efficient edge dominating (e.e.d.) 

set in G if M is dominating in L(G) and every 

edge of E is dominated exactly once in L(G) 

(that is, M is an efficient dominating set in 

L(G) ).  





 

 

Not every graph (not every tree !) has an 

efficient edge dominating set:  
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Efficient Edge Domination (EED) 

Problem  

INSTANCE: A finite graph G  (V, E). 

QUESTION: Does G have an e.e.d. set? 

Theorem [Grinstead, Slater, Sherwani, 

Holmes, 1993]  

The EED Problem is NP-complete.  



Efficient edge domination 

Efficient edge dominating sets are also called 

dominating induced matchings (d.i.m.) :   

Fact. M is an e.e.d. in graph G = (V,E)   

(1) M is an induced matching in G (that is,  

pairwise distance of edges in M at least 2),  

(2) every edge in E is intersected by exactly 

one edge from M.    



Efficient edge domination 

Theorem [Lu, Tang 1998, Lu, Ko, Tang 2002]  

EED is NP-complete for bipartite graphs, and 

is solvable in linear time for bipartite permu-

tation graphs, generalized series-parallel 

graphs and for chordal graphs. 

 



Efficient edge domination 

Theorem [Lu, Tang 1998, Lu, Ko, Tang 2002]  

EED is NP-complete for bipartite graphs, and 

is solvable in linear time for bipartite permu-

tation graphs, generalized series-parallel 

graphs and for chordal graphs. 

Open [Lu, Ko, Tang 2002]  

Complexity of EED for weakly chordal graphs 

and for permutation graphs.  

 

 



Efficient edge domination 

Theorem [Cardoso, Lozin 2008]  

EED is NP-complete for (very special) 

bipartite graphs, and is polynomial time 

solvable for claw-free graphs.  



Efficient edge domination 

Open [Cardoso, Korpelainen, Lozin 2011]  

Complexity of EED for  

- Pk–free graphs, k > 4 

- chordal bipartite graphs 

- weakly chordal graphs 



Efficient edge domination 

Theorem [B., Hundt, Nevries 2009, LATIN 

2010] The EED problem is solvable in  

- linear time for chordal bipartite graphs,  

- polynomial time for hole-free graphs, and  

- is NP-complete for planar bipartite graphs 

with maximum degree 3. 

 



Efficient edge domination 

Theorem [B., Mosca, ISAAC 2011]  

EED in linear time for P7 -free graphs in a 

robust way. 

 



Efficient edge domination 

Theorem [B., Mosca, ISAAC 2011]  

EED in linear time for P7 -free graphs in a 

robust way. 

EED in Monadic Second Order Logic:  

Fact. G = (V, E) has an e.e.d.  

 E  E   e  E  ! e  E (e  e   ) 

 

 



Efficient edge domination 

Recall: D is an efficient edge dominating set 

in G  D is dominating in L(G) and 

independent in L(G)2, i.e., D is an e.d. set in 

L(G).  

Let w(e): |N [e]| (neighborhood w.r.t. L(G)).  

Fact. M is an efficient edge dominating set in 

G  M is a maximum weight independent set 

in L(G)2 with w(M)  | E |.   



Squares of Line Graphs 

•  G chordal  L(G)2 chordal [Cameron 1989] 

•  G circular-arc  L(G)2 circular-arc [Golumbic, 

Laskar 1993]  

•  G co-comparability  L(G)2 co-comparability 

[Golumbic, Lewenstein 2000] 

•  G weakly chordal  L(G)2 weakly chordal 

[Cameron, Sritharan, Tang 2003]  

•  stronger result for AT-free graphs [J.-M. Chang 

2004] 

 



Efficient edge domination 

Recall: If the MWIS problem is solvable in  

polynomial time for the squares of the line 

graphs of all graphs in C then the EED 

problem is solvable in polynomial time on C.  

Corollary. 

EED in polynomial time for weakly chordal 

graphs and for permutation graphs.  



ED for hypergraphs 

H = (V,E) - a finite hypergraph.  

D  V is an e.d. set in H if D is an e.d. set in 

2sec(H).  

Theorem. The ED problem is NP-complete 

for –acyclic hypergraphs, and is solvable in 

polynomial time for hypertrees.   



EED for hypergraphs 

H = (V,E) - a finite hypergraph.  

M  E is an e.e.d. set in H if M is an e.e.d. set 

in L(H).  

Theorem. The EED problem is solvable in 

polynomial time for –acyclic hypergraphs, 

and is NP-complete for hypertrees.   



Maximum induced matchings for 

hypergraphs 

H = (V,E) - a finite hypergraph.  

M  E is an induced matching in H if M is an 

independent node set in L(H)2.  

Theorem. The MIM problem is solvable in 

polynomial time for –acyclic hypergraphs, 

and is NP-complete for hypertrees.   



Exact Cover for hypergraphs 

Theorem. The Exact Cover problem is NP-

complete for –acyclic hypergraphs, and is 

solvable in polynomial time for hypertrees.   
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Exact Cover 

Let H  (V, E) be a hypergraph, C a collection 

of hyperedges, and let w(e) :  |e|. If the edges 

in C are pairwise disjoint then w(C)  |V |.   

Fact. The following are equivalent: 

- C is an exact cover of V.  

- edges in C pairwise disjoint and w(C)|V |.   

- C maximum independent in L(H), w(C)|V |.    



Exact Cover 

Corollary. Exact Cover is solvable in 

polynomial time for every class C of 

hypergraphs for which MWIS is solvable in 

polynomial time on the line graphs of C.  

Example. Exact Cover is solvable in 

polynomial time for hypertrees: Their line 

graphs are chordal.  



Hypertrees 

A hypergraph H is a hypertree if there is a tree 

T such that every hyperedge of H induces a 

connected subgraph in T. 

Theorem [Duchet, Flament, Slater 1976] H is 

a hypertree  H is Helly and L(H) is chordal.  



Dually chordal graphs 

Let N(G) denote the closed neighborhood 

hypergraph of graph G.  

A graph G is dually chordal if N(G) is a 

hypertree. 

Fact.   

G2  L(N(G)). 

 



Dually chordal graphs 

Theorem [B., Dragan, Chepoi, Voloshin1994]  

G is dually chordal  G2 is chordal and N(G) 

has the Helly property  its clique 

hypergraph is a hypertree.      

(and various other characterizations in [BDCV 

1994], [Szwarcfiter, Bornstein1994], 

[Gutierrez, Oubina 1996] … 

 

 



Dually chordal graphs 

Theorem [B., Dragan, Chepoi, Voloshin1994]  

G is strongly chordal  G is hereditarily 

dually chordal. 
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Strongly chordal graphs 

G is strongly chordal if G is sun-free (i.e., Sk – 

free for any k  3) and chordal. 

Theorem. 

G is strongly chordal  it is hereditarily 

dually chordal.  

(and many other characterizations …) 



Theorem [Lubiw 1982; Dahlhaus, Duchet 

1987; Raychaudhuri 1992] For every k  2:  

G strongly chordal  Gk strongly chordal. 

 

 



Tree Structure of Hypergraphs 

Let H=(V, E) be a hypergraph.  

T is a join tree of H if E is the set of nodes of T 

and for all vertices v  V, the occurencies of v 

in nodes of T form subtrees of T. 

H is –acyclic if H has a join tree.  
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Chordal graphs 

Theorem [Walter, Gavril, Buneman 1972]  

G is chordal  G is the intersection graph of 

subtrees of a tree.  

Corollary. G is chordal  the hypergraph of 

its -maximal cliques has a join tree (which is 

called clique tree for graphs). 
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Tree Structure 

Let H=(V, E) be a hypergraph.  

H is conformal if every maximal clique of its 

2-section graph is contained in a hyperedge. 

Theorem [Duchet, Flament, Slater 1976]  

H is –acyclic  H is conformal and its 2-

section graph is chordal.  



Tree Structure 

Fact. H is a hypertree  its dual is –acyclic.  

Theorem [Duchet, Flament, Slater 1976]  

H is a hypertree  H is Helly and its line graph 

is chordal. 


