
QUBO Polynomial Time Preprocessing What is Quadratization? Quadratization Techniques

Quadratization of Pseudo-Boolean Functions

Endre Boros

RUTCOR, Rutgers University

University of Primorska, November 19, 20121

1Joint work with A. Fix, A. Gruber, G. Tavares and R. Zabih



QUBO Polynomial Time Preprocessing What is Quadratization? Quadratization Techniques

Outline

1 Quadratic Unconstrained Binary Optimization
Quadratic Pseudo-Boolean Functions
Representations and Bounds
Origin of Graph Cut Models
Network Model for General QUBO

2 Polynomial Time Preprocessing
Components of the Algorithm
Computational Results

3 What is Quadratization?
Quadratization
Submodular Functions

4 Quadratization Techniques
Penalty Function
Termwise Quadratization
Multiple Split of Terms
Splitting Off Common Parts
Results



QUBO Polynomial Time Preprocessing What is Quadratization? Quadratization Techniques

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals

Variables: x1, x2, ..., xn ∈ {0, 1}.
Negations: xi = 1− xi ∈ {0, 1} for i = 1, ..., n
Literals: x1, x1, ..., xn, xn

Quadratic Pseudo-Boolean Function (QPBF): f : {0, 1}n → R

f(x1, ..., xn) = c0 +

n∑
j=1

cjxj +
∑

1≤i<j≤n

cijxixj

Quadratic Unconstrained Binary Optimization (QUBO)

min
(x1,...,xn)∈{0,1}n

f(x1, ..., xn)
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Representations and Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials
in 2n literals x1, x1, ..., xn, xn
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Network Model for Submodular QUBO (Hammer, 1965)

A QPBF is submodular IFF all quadratic coefficients are
nonpositive. (Doit Yourself, anytime)

To a submodular QPBF f associate a network Gf as follows

=

There is a one-to-one correspondence between values of f and s− t
cut values of Gf . (Hammer, 1965)
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Implication Networks (Boros, Hammer, Sun, 1989, 1992)
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To a quadratic posiform

φ = 2x0x0 + 2x1x0 + 6x2x0 + 4x3x0 + 8x1x2 + 6x1x3 + 2x2x3

we associate a directed network Nφ on vertex set

V (Nφ) = {x0, x0, x1, x1, ..., xn, xn} (x0 ≡ 1)
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φ = 2x0x0 + 2x1x0 + 6x2x0 + 4x3x0 + 8x1x2 + 6x1x3 + 2x2x3

we associate a directed network Nφ on vertex set

V (Nφ) = {x0, x0, x1, x1, ..., xn, xn} (x0 ≡ 1)

Homogenize it by x0.

Associate to each term αuv (u 6= v) two arcs (u, v) and (v, u) with
capacities c(u, v) = c(v, u) = α/2.

Associate to γ x0x0 one arc (x0, x0) with capacity c(x0, x0) = γ and
add arc (x0, x0) with capacity c(x0, x0) = +∞.
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V (Nφ) = {x0, x0, x1, x1, ..., xn, xn} (x0 ≡ 1)

Homogenize it by x0.

Associate to each term αuv (u 6= v) two arcs (u, v) and (v, u) with
capacities c(u, v) = c(v, u) = α/2.

Associate to γ x0x0 one arc (x0, x0) with capacity c(x0, x0) = γ and
add arc (x0, x0) with capacity c(x0, x0) = +∞.
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To a quadratic posiform

φ = 2x0x0 + 2x1x0 + 6x2x0 + 4x3x0 + 8x1x2 + 6x1x3 + 2x2x3

we associate a directed network Nφ on vertex set

V (Nφ) = {x0, x0, x1, x1, ..., xn, xn} (x0 ≡ 1)

Nφ is a symmetric network: twin pair of paths, cycles and flows

If u0, u1, ..., uk is a directed path (cycle) in Nφ then so is
uk, uk−1, ..., u1, u0.

Every feasible circulation in Nφ has its symmetric twin also
feasible, and hence their convex combination is a feasible
symmetric circulation.

x1 + x1x3 + x3 = x0x1 + x1x3 + x3x0 + x0x0
= x0x1 + x1x3 + x3x0 + x0x0
= x1x3 + 1
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we associate a directed network Nφ on vertex set

V (Nφ) = {x0, x0, x1, x1, ..., xn, xn} (x0 ≡ 1)

Nφ is a symmetric network: twin pair of paths, cycles and flows

If u0, u1, ..., uk is a directed path (cycle) in Nφ then so is
uk, uk−1, ..., u1, u0.

Every feasible circulation in Nφ has its symmetric twin also
feasible, and hence their convex combination is a feasible
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Claims

Two quadratic posiforms φ and ψ represent the same QPBF if and
only if Nψ is the residual network of Nφ corresponding to a
symmetric feasible circulation.

The roof dual value C2(f) is the maximum flow value on arc (x0, x0)
in a feasible circulation in Nφ, where φ is an arbitrary quadratic
posiform of f .

If Nψ is the residual network corresponding to such a maximum
circulation, then the strong components of Nψ \ {(x0, x0)} induce a
decomposition of f , in which each component can be minimized
independently of the others to obtain a minimum of f .

cf. persistency (Hammer, Hansen and Simeone, 1984)
cf. decomposition (Billionet and Sutter, 1992)

Recursive application of roof-duality does not provide further
improvements!
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Two quadratic posiforms φ and ψ represent the same QPBF if and
only if Nψ is the residual network of Nφ corresponding to a
symmetric feasible circulation.

The roof dual value C2(f) is the maximum flow value on arc (x0, x0)
in a feasible circulation in Nφ, where φ is an arbitrary quadratic
posiform of f .

If Nψ is the residual network corresponding to such a maximum
circulation, then the strong components of Nψ \ {(x0, x0)} induce a
decomposition of f , in which each component can be minimized
independently of the others to obtain a minimum of f .
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Claims

Two quadratic posiforms φ and ψ represent the same QPBF if and
only if Nψ is the residual network of Nφ corresponding to a
symmetric feasible circulation.

The roof dual value C2(f) is the maximum flow value on arc (x0, x0)
in a feasible circulation in Nφ, where φ is an arbitrary quadratic
posiform of f .

If Nψ is the residual network corresponding to such a maximum
circulation, then the strong components of Nψ \ {(x0, x0)} induce a
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cf. decomposition (Billionet and Sutter, 1992)

Recursive application of roof-duality does not provide further
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Components of the Algorithm

The purpose of the preprocessing algorithm is to fix some of the variables
at their optimum values and decompose the remaining problem into
several smaller problems which do not share variables.

Build implication network
Compute maximum flow; fix variables by persistency (increase
capacities of some arcs)
Probe remaining variables and repeat all of the above as long as there
is some change.
Output remaining strong components, if any.
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Components of the Algorithm

The purpose of the preprocessing algorithm is to fix some of the variables
at their optimum values and decompose the remaining problem into
several smaller problems which do not share variables.

Build implication network
Compute maximum flow; fix variables by persistency (increase
capacities of some arcs)
Probe remaining variables and repeat all of the above as long as there
is some change.
Output remaining strong components, if any.

If the input QPBF is submodular, then the above procedure will
fix all the variables at their optimal values in the first round,
without any probing.
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Via Minimization in VLSI Design

Percentage of Variables Fixed by

Problem1 n Roof Duality Probing ALL Time
(strong) (weak) (forcing) (equalities) TOOLS (sec)

via.c1y 829 93.6% 6.4% 0% 0% 100% 0.03
via.c2y 981 94.7% 5.3% 0% 0% 100% 0.06
via.c3y 1328 94.6% 5.4% 0% 0% 100% 0.09
via.c4y 1367 96.4% 3.6% 0% 0% 100% 0.09
via.c5y 1203 93.1% 6.9% 0% 0% 100% 0.08

via.c1n 828 57.4% 9.6% 32.4% 0.6% 100% 0.49
via.c2n 980 12.4% 4.4% 83.1% 0.1% 100% 7.14
via.c3n 1327 6.8% 5.7% 87.3% 0.2% 100% 18.17
via.c4n 1366 11.1% 1.3% 87.6% 0% 100% 23.08
via.c5n 1202 3.4% 1.4% 95.0% 0.2% 100% 17.13

1 S. Homer and M. Peinado. Design and performance of parallel and distributed approximation

algorithms for maxcut. Journal of Parallel and Distributed Computing 46 (1997) 48-61.
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Vertex Cover in Planar Graphs

Averages for 100 graphs in each of the 4 groups
Variables Fixed (%) Time (sec)

n A. D. N.2 QUBO3 A. D. N.2 QUBO3

1000 68.4 100 4.06 0.05
2000 67.4 100 12.24 0.16
3000 65.5 100 30.90 0.27
4000 62.7 100 60.45 0.53

2 Alber, Dorn, Niedermeier. Experimental evaluation of a tree decomposition
based algorithm for vertex cover on planar graphs. Discrete Applied Mathematics
145 (2005) 219-231; 750 GHz, Linux PC, 720 MB

3 Pentium 4, 2.8 GHz, Windows XP, 512 MB
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Jumbo Vertex Cover in Planar Graphs

Computing Times (min)4

Vertices Planar Density
10% 50% 90%

50,000 0.7 2.3 0.9
100,000 2.9 10.2 3.9
250,000 19.5 69.8 26.3
500,000 79.3 277.3 106.9

4 Averages over 3 experiments on a Xeon 3.06 GHz, XP, 3.5 GB RAM; ALL

problems had 100% of their variables fixed.
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One Dimensional Ising Models

Average Computing Time (s)
σ Number of Spins Branch, Cut & Price5 Biq Maq5 QUBO6

2.5 100 699 68 1
150 92 079 388 3
200 N/A 993 9
250 N/A 6 567 14
300 N/A 34 572 21

3.0 100 256 59 1
150 13 491 293 2
200 61 271 1 034 3
250 55 795 3 594 4
300 55 528 8 496 5

5 F. Rendl, G. Rinaldi, A. Wiegele. (2007). Solving max-cut to optimality by
intersecting semidefinite and polyhedral relaxations.

6 ALL problems were solved by QUBO.
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Larger One Dimensional Ising Models

Average of 3 Problems
σ n Variables not fixed QUBO Time (s)7

2.5 500 5 13
750 22 30

1000 24 53
1250 20 81
1500 32 124

3.0 500 0 4
750 0 12

1000 0 23
1250 0 37
1500 0 59

7 Pentium M, 1.6 GHz 760 MB RAM
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Quadratization of PBFs

Given f : {0, 1}n → R find quadratic g : {0, 1}n+m → R such that

f(x) = min
y∈{0,1}m

g(x,y) ∀ x ∈ {0, 1}n.

♣ Keep m small!
♦ Have g as submodular as possible!
♥ Do not introduce large coefficients!
♠ Have it ALL!

Rosenberg, 1975: All PBFs have polynomial sized
quadratizations.

Zivny, Cohen and Jeavons, 2009: Not all submodular
PBFs have submodular quadratizations.

Ishikawa, 2009, 2011: All PBFs have small quadratizations with no
large coefficients.
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Submodular PBFs

A PBF f : {0, 1}n → R is submodular if

f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y) ∀ x,y ∈ {0, 1}n.

Polynomial recognition if deg(f) ≤ 3.
(Billionnet and Minoux, 1985)

Recognition is NP-hard if deg(f) ≥ 4.
(Gallo and Simeone, 1989; Crama 1989)

A QPBF is submodular iff it has no positive quadratic terms.
(Nemhauser and Wolsey, 1981)

A submodular QPBO is solved by the network based
preprocessing.

(Hammer, 1965)
Which PBFs have submodular quadratization?
How to recognize if a PBF has a submodular quadratization?
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Rosenberg’s Penalty Functions Method (1975)

p(x, y, w) = xy − 2xw − 2yw + 3w =

{
= 0 if w = xy,
≥ 1 if w 6= xy

f(x, y, ...) = xyA+B = min
w∈{0,1}

wA+B +Mp(x, y, w)

if M is large enough.

Many positive quadratic terms with large coefficients
(recursion!), even if the input is subodular.

NP-hard to find a quadratization in this way with the minimum
number of new variables.

Not possible to substitute the product of 3 or more variables with a
single new variable.
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Negative Terms

Kolmogorov and Zabih (2004), Fredman and Drineas (2005):

−x1x2 · · ·xd = min
w∈{0,1}

w(d− 1− x1 − x2 · · · − xd)

Rother, Kohli, Feng and Jia (2009):

−
∏
j∈N

xj
∏
j∈P

xj = min
u,v∈{0,1}

−uv + u
∑
j∈N

xj + v
∑
j∈P

xj

Only one or two new variables per term; at most one positive
quadratic term; no large coefficients.

Theorem (vs. Billionet and Minoux (1985))

Cubic submodular functions have submodular quadratization of polynomial
size with no large coefficients.
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Positive Terms

Ishikawa (2009, 2011):

d∏
j=1

xj = S2(x) + min
w∈{0,1}k

B(w)− 2A(w)S1(x) + ρ [S1(x)− d+ 1]

where d = 2k + 2− ρ, ρ ∈ {0, 1}, and

S1(x)=
d∑

j=1

xj S2(x)=
∑

1≤i<j≤d

xixj

A(w)=
k∑

j=1

wj B(w)=
k∑

j=1

(4j − 1)wj

Only ≈ d/2 new variables per term; no large coefficients;
many positive quadratic terms.
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Multiple Splits

Assume that φi(w) ∈ {0, 1} for i ∈ [q], w ∈ {0, 1}p such that

min
w∈{0,1}p

q∑
i=1

φi(w) = 1, and

∀I $ [q] ∃w∗ ∈ {0, 1}p s.t.
∑
i∈I

φi(w
∗) = 0.

For instance φ1 = w1, φ2 = w2, and φ3 = w1w2 is such a system.

Theorem

If Pi, i ∈ [q] are subsets of indices covering [d], then we have

d∏
j=1

xj = min
w∈{0,1}p

q∑
i=1

φi(w)
∏
j∈Pi

xj .

With p = dlog qe new variables we can split a degree d = kq term
into q terms of degree k + p.
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Let C ⊆ [n], H ⊆ 2[n]\C , and consider the following fragment of a
pseudo-Boolean function:

g(x) =
∑
H∈H

αH

∏
j∈C∪H

xj ,

where αH ≥ 0 for all H ∈ H.

Theorem (Set of Positive Terms)

g(x) = min
w∈{0,1}

(∑
H∈H

αH

)
w
∏
j∈C

xj +
∑
H∈H

αHw
∏
j∈H

xj .

Theorem (Set of Negative Terms)

−g(x) = min
w∈{0,1}

∑
H∈H

αHw

(
1−

∏
j∈C

xj −
∏
j∈H

xj

)
.
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Corollary

A PBF in n variables, with t terms of degree d has a quadratization with
≈ n+ k

(
n
k

)
+ td

k
new variables and with at most n− 1 positive quadratic

terms, for any k ≥ 1.

Ishikawa’s method provides a quadratization with ≈ n+ td
2

new variables

and max{
(
n
2

)
, t
(
d
2

)
} positive quadratic terms.

New variables # positive terms # terms % fixed by QPBO
Ishikawa 224,346 421,897 1,133,811 80.4%

Our method 236,806 38,343 677,183 96.1%
∆ +6% −90% −40% +20%

Figure : Performance comparison of reductions, on Ishikawa’s benchmarks.
Relative performance of our method is shown as ∆. (Joint work with Alexander
Fix and Ramin Zabih (Cornell University).)
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