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A matrix problem and a geometry problem

Theorem (L. Molnár and W. Timmermann, 2011)

Let H be a complex separable Hilbert space with dimH ≥ 3.
Assume φ : Bs(H)→ Bs(H) is a bijection such that∥∥[φ(A), φ(B)]∥∥ =

∥∥[A,B]∥∥ (A,B ∈ Bs(H)).

Then there exist either a unitary or an antiunitary operator U on H
and a function f : Bs(H)→ R such that

φ(A) = ±UAU∗ + f (A)I (A ∈ Bs(H)).
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The proof uses the following theorem:

Theorem (L. Molnár and P. �emrl, 2005)

Let H be a complex separable Hilbert space with dimH ≥ 3 and let

φ : Bs(H)→ Bs(H) be a bijective transformation which preserves

commutativity in both directions.

Then there exists either a unitary

or an antiunitary operator U on H and for every operator

A ∈ Bs(H) there is a real valued bounded Borel function fA on

σ(A) such that

φ(A) = UfA(A)U
∗ (A ∈ Bs(H)).

Question

What happens in two dimensions?
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A matrix problem and a geometry problem

Commutativity preservers on Bs(C2)

Two linearly independent operators A,B ∈ Bs(C2) commute ⇐⇒
∃α, β ∈ R s.t. αA+ βB = I .

E.g. if φ : Bs(C2)→ Bs(C2) is non-singular and linear, then
φ preserves commutativity in both directions ⇐⇒
φ(I ) ∈ (R \ {0}) · I .

So the preservation of commutativity provides too few information.
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The �rst step: linear commutativity preservers

Theorem (with G. Nagy, 2014)

Suppose that d ∈ N, ||| · ||| is an arbitrary unitarily invariant norm

and φ : Bs(Cd)→ Bs(Cd) is a (real-)linear transformation such that∣∣∣∣∣∣[φ(A), φ(B)]∣∣∣∣∣∣ = ∣∣∣∣∣∣[A,B]∣∣∣∣∣∣ (A,B ∈ Bs(Cd)).

Then there exist either a unitary or an antiunitary operator U on

Cd and a linear functional f : Bs(Cd)→ R such that

φ(A) = UAU∗ + f (A)I (A ∈ Bs(Cd))

or

φ(A) = −UAU∗ + f (A)I (A ∈ Bs(Cd)).
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What can we do in general?

Problem (Reformulation)

Characterize those maps φ : Bs(C2)→ Bs(C2) s.t.

det[A,B] = det[φ(A), φ(B)] (A,B ∈ Bs(C2)).

Let Z2 := {A ∈ Bs(C2) : TrA = 0} and

φ̃ : Bs(C2)→ Z2 ⊆ Bs(C2), φ̃(A) = φ(A)− Trφ(A)

2
· I .

We de�ne the following mapping:

ψ := φ̃|Z2 : Z2 → Z2.

We can prove the following:

φ̃(A) = ±ψ
(
A− TrA

2
I

)
(A ∈ Bs(C2)).
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Now, we identify elements of Z2 with vectors of R3 using the vector
space isomorphism

ι : R3 → Z2, (a, b, c) 7→

(
a b + ic

b − ic −a

)
,

and we de�ne the following transformation:

ξ : R3 → R3, ξ = ι−1 ◦ ψ ◦ ι.

A rather simple calculation shows the following two equations:

det[ι(a1, b1, c1), ι(a2, b2, c2)] = 4|(a1, b1, c1)× (a2, b2, c2)|2

and ∣∣ξ(a1, b1, c1)× ξ(a2, b2, c2)∣∣ = |(a1, b1, c1)× (a2, b2, c2)|.
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Problem (Reformulation #2)

Characterize those maps φ : R3 → R3 s.t.

�(~a, ~b) = �(φ(~a), φ(~b)) (∀ ~a, ~b ∈ R3)

where �(~a, ~b) = |~a× ~b| =

√
|~a|2 · |~b|2 − 〈~a, ~b〉2 =√

|~a|2 · |~b|2 − 1
4
(|~a− ~b|2 − |~a|2 − |~b|2)2︸ ︷︷ ︸

Heron's formula

.

Of course, the similar question could be asked for an arbitrary real
Hilbert space E . This is the Rassias-Wagner problem.

(Beckmann-Quarles; Lester-Martin, linear R-W)
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Theorem (G.)

Let E be a real (not necessarily separable) Hilbert space and

φ : E → E be an arbitrary transformation such that

�(~a, ~b) = �(φ(~a), φ(~b)) (∀ ~a, ~b ∈ E ). (1)

(i) If dimE = 2, then there exists a linear operator A : E → E

with | detA| = 1 such that the following holds:

φ(~a) = ±A~a (~a ∈ E ). (2)
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Theorem (G. continued)

(ii) If 2 < dimE <∞, then there exists an orthogonal linear

operator R : E → E such that

φ(~a) = ±R~a (~a ∈ E )

is satis�ed.

(iii) If dimE =∞ and in addition φ is assumed to be bijective,

then there exists a linear, surjective isometry R : E → E such

that we have

φ(~a) = ±R~a (~a ∈ E ).
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Outline of the proof for n = 3

Let us consider the projectivised R3 which will be denoted by
P(R3). The subspace generated by ~v will be denoted by [~v ]. Let

gφ : P(R3)→ P(R3), gφ([~v ]) = [φ(~v)] (~v 6= ~0).

Note that φ(~v) = ~0 ⇐⇒ ~v = ~0.

STEP 1: We prove that gφ is a homeomorphism.

György Pál Gehér A matrix problem and a geometry problem



A matrix problem and a geometry problem

Outline of the proof for n = 3

Let us consider the projectivised R3 which will be denoted by
P(R3). The subspace generated by ~v will be denoted by [~v ]. Let

gφ : P(R3)→ P(R3), gφ([~v ]) = [φ(~v)] (~v 6= ~0).

Note that φ(~v) = ~0 ⇐⇒ ~v = ~0.

STEP 1: We prove that gφ is a homeomorphism.

György Pál Gehér A matrix problem and a geometry problem



A matrix problem and a geometry problem

STEP 2: We consider two linearly independent vectors ~a, ~b ∈ E and
let

C~a,~b :=
{
~v ∈ E \ {0} : �(~v , ~a) = �(~v , ~b)

}
⊆ E

(note that C~a,~b is a plane i� |~a| = |~b|)

and

PC~a,~b :=
{
[~v ] ∈ P(R3) : ~v ∈ C~a,~b

}
.

We can show that PC~a,~b contains a loop γ : [0, 1]→ PC~a,~b not
homotopic to the trivial loop δ : [0, 1]→ PC~a,~b, δ ≡ γ(0) if and
only if |~a| = |~b| holds.
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STEP 3: Using that gφ is a homeomorphism, we obtain that

|φ(~a)| = λφ|~a| (~a ∈ R3)

holds with some λφ > 0.

We prove that λφ = 1, using that gφ is a
homeomorphism.

STEP 4: Since √
|~a|2 · |~b|2 − 〈~a, ~b〉2 = �(~a, ~b)

= �(φ(~a), φ(~b)) =
√
|φ(~a)|2 · |φ(~b)|2 − 〈φ(~a), φ(~b)〉2 (~a, ~b ∈ R3),

we obtain

|〈~a, ~b〉| = |〈φ(~a), φ(~b)〉| (~a, ~b ∈ R3).

Finally, we apply Wigner's theorem. �
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we obtain

|〈~a, ~b〉| = |〈φ(~a), φ(~b)〉| (~a, ~b ∈ R3).

Finally, we apply Wigner's theorem. �
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Back to the Molnár-Timmermann problem

Theorem (G.)

Fix a unitarily invariant norm ||| · ||| on Cd×d where d ≥ 2. Let
φ : Bs(Cd)→ Bs(Cd) be an arbitrary transformation for which the

following holds:

|||[A,B]||| = |||[φ(A), φ(B)]||| (A,B ∈ Bs(Cd)). (3)

Then there exist a function f : Bs(Cd)→ R and a unitary or

antiunitary operator U such that

φ(A) = ±UAU∗ + f (A)I (A ∈ Bs(Cd))

is satis�ed.
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Back to the Molnár-Timmermann problem (cont.)

Theorem (G.)

Let H be a separable Hilbert space and �x a unitarily invariant

norm ||| · ||| on B(H). Let φ : Bs(H)→ Bs(H) be a bijection for

which the following holds:

|||[A,B]||| = |||[φ(A), φ(B)]||| (A,B ∈ Hd). (4)

Then there exist a function f : Bs(H)→ R and a unitary or

antiunitary operator U such that

φ(A) = ±UAU∗ + f (A)I (A ∈ Bs(H))

is satis�ed.
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Back to the Molnár-Timmermann problem (cont.)

Theorem (G.)
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k-parallelepipeds

For any k vectors ~a1, . . . ~ak ∈ E let us denote the k-dimensional
volume of the parallelepiped spanned by them by the symbol
�k(~a1, . . . ~ak).

Theorem (G.)

Let E be a real (not necessarily separable) Hilbert space,

2 < k <∞, k ≤ dimE and φ : E → E be a transformation such

that

�k(~a1, . . . ~ak) = �k(φ(~a1), . . . φ(~ak)) (∀ ~a1, . . . ~ak ∈ E ). (5)
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Theorem (G., cont.)

(i) If dimE = k , then there exists a linear operator A : E → E

with | detA| = 1 such that the following holds:

φ(~a) = ±A~a (~a ∈ E ). (6)

(ii) If 2 < k < dimE (≤ ∞), then there exists a linear (not

necessarily surjective) isometry R : E → E such that

φ(~a) = ±R~a (~a ∈ E )

is satis�ed.

György Pál Gehér A matrix problem and a geometry problem



A matrix problem and a geometry problem

Theorem (G., cont.)
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The proof is a straightforward consequence of the fundamental
theorem of projective geometry.
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Back to the parallelogram case

Note that if we knew that [~c] ⊆ [~a, ~b], then we could use the
fundamental theorem of projective geometry and drop the
bijectivity condition.

Question

If dimE =∞, is the condition

[~c] ⊆ [~a, ~b] =⇒ [φ(~c)] ⊆ [φ(~a), φ(~b)]

satis�ed?

Problem

Let E be an arbitrary real Hilbert space. Characterize those

transformations φ : R2 → E which preservers the area of

parallelograms.
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Problem

Describe those transformations φ : E → E s. t.

�(~a, ~b) = 1 =⇒ �(φ(~a), φ(~b)) = 1

holds.

Problem

Characterize those transformations φ : E → E s. t.

�(~a, ~b) = 0 =⇒ �(φ(~a), φ(~b)) = 0

and

�(~a, ~b) = 1 =⇒ �(φ(~a), φ(~b)) = 1

are satis�ed.
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