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Motivation

2011 DARPA shredder challenge:
UCSD team used crowdsourcing to
piece together shredded paper.
Polymath Project: Timothy Gowers’
experiment with “massively
collaborative mathematics.”
How might people cooperatively
combine their individual ideas to
solve a problem?
Coagulation model to form
coalitions: discrete Smoluchowski
dynamics with additional restrictions,
say kin relations or spatial proximity.
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People and ideas (puzzle pieces)

A dynamic on two graphs with the same vertex set but different
edges, introduced in a 2015 paper by Brummitt, Chatterjee,
Dey, and Sivakoff, henceforth referred to as BCDS.
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People and ideas (puzzle pieces)

If two people know each
other...

and have compatible
ideas...
then they merge their
ideas.

Generally, if two groups
with merged ideas know
each other and have
compatible ideas...
then they merge their ideas.
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People and ideas (puzzle pieces)

This generates larger and larger partial solutions, as in this
intermediate step from the DARPA challenge.
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Jigsaw percolation model

The vertex set V has N vertices.
People Graph: Erdős-Rényi random graph
(V ,Eppl) ∼ G(N,p).
Puzzle Graphs: Connected deterministic graphs (V ,Epuz).

Example: N = 20,
p = 0.15, and (V ,Epuz)
is the ring graph on 20
vertices (i.e., Z20).

How connected must the people graph be to solve the puzzle?
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Basic jigsaw percolation

Start by the partition of V into singleton clusters. Iteratively
create coarser partitions by merging existing clusters.

Basic jigsaw merging rule [BCDS]
Merge two clusters, W1 and W2, if there is a puzzle edge
between a pair v1 ∈W1, v2 ∈W2; and a people edge between
a pair v ′1 ∈W1, v ′2 ∈W2.

The event Solve happens if eventually all vertices are in the
same cluster.
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Adjacent-Edge (AE) jigsaw percolation

Adjacent-Edge Merging Rule [BCDS]
Merge any two clusters, W1 and W2, if there is a vertex v1 ∈W1
and vertices v2, v ′2 ∈W2 such that there is a puzzle edge
between v1 and v2, and a people edge between v1 and v ′2.

Open question: Is Adjacent-Edge jigsaw percolation
distinguishable from basic jigsaw percolation?
That is, are in some substantial way group connections more
important than individual ones?
Our results (and their proofs) apply to both versions.
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AE jigsaw dynamics: a simple example

Solved the puzzle!

Each person has one unique piece of the puzzle.

People Graph of who knows whom:
(V ,Eppl).

Puzzle Graph of compatible ideas:
(V ,Epuz).

Successively merge groups that know one another and have
compatible puzzle pieces.

9



AE jigsaw dynamics: a simple example

Solved the puzzle!

Each person has one unique piece of the puzzle.

People Graph of who knows whom:
(V ,Eppl).

Puzzle Graph of compatible ideas:
(V ,Epuz).

Successively merge groups that know one another and have
compatible puzzle pieces.

9



AE jigsaw dynamics: a simple example

Solved the puzzle!

Each person has one unique piece of the puzzle.

People Graph of who knows whom:
(V ,Eppl).

Puzzle Graph of compatible ideas:
(V ,Epuz).

Successively merge groups that know one another and have
compatible puzzle pieces.

9



AE jigsaw dynamics: a simple example

Solved the puzzle!

Each person has one unique piece of the puzzle.

People Graph of who knows whom:
(V ,Eppl).

Puzzle Graph of compatible ideas:
(V ,Epuz).

Successively merge groups that know one another and have
compatible puzzle pieces.

9



AE jigsaw dynamics: a simple example

Solved the puzzle!

Each person has one unique piece of the puzzle.

People Graph of who knows whom:
(V ,Eppl).

Puzzle Graph of compatible ideas:
(V ,Epuz).

Successively merge groups that know one another and have
compatible puzzle pieces.

9



AE jigsaw dynamics on a torus

Adjacent-Edge JP on 10× 10 torus (puzzle graph), with
p = 0.11 (people graph is G(102,0.11)), at times t = 0, . . . ,5.
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Jigsaw percolation on Z2
n: nucleation

AE JP on Z2
n with n = 400,

p = 0.021 at t = 31.
Apparently, solving the puzzle
is caused by a local
concentration of highly
connected individuals that
create a gradually growing
partial solution by adding
boundary pieces. This
phenomenon is called
nucleation.
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Results for general puzzle graphs

Setting: a sequence of connected puzzle graphs on N vertices
and maximum degree D, with N →∞; and Erdős-Rényi people
graph with edge density p on the same vertex set.

Theorem [BCDS]

If p = λ/ log N with λ > π2/6, then

Pp(Solve)→ 1.

Theorem
If p = µ/(D log N) with µ < 1/30, then

Pp(Solve)→ 0.

Corollary: For puzzles of bounded degree, the transition
between low and high probability of Solve occurs when
p = Θ(1/ log N).
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Rule of thumb

On vertex-transitive graphs with N vertices of degree D, the
transition between low and high P (Solve) typically occurs as
pD log N changes between a small constant and a large
constant.

This rule does not hold universally: if Gpuz is the complete
graph on N vertices, p ≈ 1/(N log N) is too small for
connectivity of Gppl!
It does hold for many famous graphs.

Theorem: Hypercube puzzle

Assume the puzzle graph is the hypercube {0,1}n. There exist
constants c1, c2 > 0 so that

P(Solve)→

{
0 when p ≤ c1/n2

1 when p ≥ c2/n2

Open question: Sharp constant?
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Proof of the upper bound: local growth

p > (1 + ε)
π2

6 log N
=⇒ Pp(Solve)→ 1

Grow: j is people-connected to
{1,2, . . . , j − 1},
for all j ≤ K .
Then, with g(x) = − log(1− e−x ), puzzle

people

1 2
3

4 j

1
j-1

2

 j

Pp(Grow) ≥
∞∏

j=1

(
1− (1− p)j

)
≥ exp

−∑
j

g(pj)


≥ exp

(
−p−1

∫ ∞
0

g(x) dx
)

= exp
(
−p−1 · π

2

6

)
≥ N−1/(1+ε)
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Proof of the upper bound: unstoppable clusters

Assume K ≥ C(log N)2 for a large enough C.

Assume you can create a successful instance of Grow on some
set S of K connected vertices, and thus generate a cluster of
size K . This cluster is unstoppable! Why?

With high probability, all other vertices are people-connected to
it:

Pp(some vertex is not people-connected to S)

≤ N(1− p)K ≤ Ne−pK ≤ Ne−C log N = N1−C .
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Upper bound: independent opportunities for Grow

Take a spanning tree for (V ,Epuz), draw it on the plane,

then
doubly-traverse the edges to find Ω(N/K 2)� N1/(1+ε)

edge-disjoint subtrees with K vertices. (Example: K = 4.)
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Lower bound: a necessary condition for Solve

If c is small enough, and D is the maximum degree of puzzle
graph,

p <
c

D log N
=⇒ Pp(Solve)→ 0

Necessary condition:
For any k there is a subset of vertex set
with size ∈ [k ,2k ] that is internally
solved. This set must be connected in
both graphs.
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Lower bound: connected sets of logarithmic size

1 The number of puzzle-connected sets of k vertices
containing a fixed vertex is at most (3D)k .

2 The probability that a fixed set of k = α log N people
contains at least k edges is at most(k2

k

)
pk ≤ (3k2)k

kk pk = (3kp)k ≤ (3cα/D)α log N .
3 If Solve happens, there exists a set of size α log N, for

some α ∈ [1,2] that is connected in the puzzle graph and
contains at least α log N people edges.

4 Thus P(Solve) ≤ N log N supα(3D)α log N(3cα/D)α log N ≤
N2(18c)log N .
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Critical probability

The critical probability pc is the solution p to Pp(Solve) = 1/2.

Sharp transition occurs if, for every ε > 0,

P(1−ε)pc (Solve)→ 0 and P(1+ε)pc (Solve)→ 1.

Sharp transition is thought to be a nearly universal
phenomenon, due to results by E. Friedgut, G. Kalai, and
others. Their theorems do not cover Jigsaw percolation, as they
depend on transitivity of random bits.

We can prove sharp transition only when we can establish
precise asymptotics for pc .
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Sharp transition for the ring puzzle

AE JP on Zn with
n = 1000, averaged over
200 trials [BCSD].
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PHSolveL
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6 log n

1

log n
pc
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Theorem: ring puzzle.

If Gpuz = Zn then

pc log n→ π2

6
,

with sharp transition.

Open question: Note that the sharp transition in the picture is
significantly below π2/(6 log n). Why?
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Jigsaw percolation on Z2
n

AE JP on Z2
n with n = 400,

p = 0.021 at t = 31.

Theorem: 2d-torus AE JP

Assume Gpuz = Z2
n. For large

enough n,

0.0388
log n

< pc <
0.303
log n

.

Open question: Can these bounds be improved? Can sharp
transition be proved? One obstacle: we known of no useful
necessary condition other than connectivity!
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Other results: stricter verification

Merging Rules
Merge two clusters, W1 and W2, if at least one of the following
holds:

1 there are doubly connected vertices v1 ∈W1 and v2 ∈W2;
or

2 there is a vertex v1 ∈W1 with a puzzle neighbor and at
least σ people neighbors in W2. (Thus σ is the minimal
number of “referees” needed to verify that a piece fits.)

Theorem: scaling for large σ.
Assume that the sequence of puzzle graphs has bounded
degree. For N ≥ N0(σ), pc is between two constants times
σ2/ log N.

Requiring a lot of “referees” to verify a fit is very costly!
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Other results: free corner fit

Merging Rules
Merge two clusters, W1 and W2, if at least one of the following
holds:

1 there are doubly connected vertices v1 ∈W1 and v2 ∈W2;
or

2 there is a vertex v1 ∈W1 with a puzzle neighbor and at
least σ people neighbors in W2; or

3 there is a v1 ∈W1 with at least 2 puzzle neighbors in W2.
(On two-dimensional lattice graphs, corner pieces require
no verification at all.)
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Free corner fit on Z2
n

JP (σ = 1, free corner fit) with
n = 400, p = 0.009, at t = 31.

Theorem: 2d-torus JP with free
corner fit
Let τ = 1, σ ≥ 1, θ = 2, and
g(x) = − log(1− e−x ). Let

λc =

∫ ∞
0

g
(

x2σ+1

σ!

)
dx

=
(σ!)

1
2σ+1 Γ( 1

2σ+1)ζ(2σ+2
2σ+1)

(2σ + 1)
.

Then as n→∞,

pc(log n)2+ 1
σ → λ

2+ 1
σ

c ,

with sharp transition.
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Origin of the power of log n

Why is pc ≈ (logn)2+1/σ?

1 Consider an L× L square with L ≈ p−σ/(2σ+1) � p−1/2.
Then, the probability that a point on the boundary is
Gppl-connected to a point inside is on the order
L(L2p)σ = L2σ+1pσ ≈ 1.

2 This order of L is critical, and the probability of the
formation of clusters that traverse such sizes is about
exp(−Cp−σ/(2σ+1)), for some constant C.

3 This probability must exceed 1/n2 for the puzzle to be
solved, which gives the claimed power for pc .
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