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Snarks

A snark is a connected, bridgeless cubic graph with chromatic
index equal to 4.

non-snark = bridgeless cubic 3-edge colorable graph
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The Petersen graph is a snark
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Blanuša Snarks (1946)
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Cayley snarks?

A Cayley graph Cay(G , S) on a group G relative to a subset
S = S−1 ⊆ G \ {1} has vertex set G and edges of the form
{g , gs}, g ∈ G , s ∈ S .

Example: Cay(Z6, {±1, 3}).

Are there snarks amongst Cayley graphs? (Alspach, Liu and
Zhang, 1996)
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Snarks

Nedela, Škoviera, Combin., 2001

If there exists a Cayley snark, then there is a Cayley snark
Cay(G , {a, x , x−1}) where x has odd order, a2 = 1, and G = 〈a, x〉
is either a non-abelian simple group, or G has a unique non-trivial
proper normal subgroup H which is either simple non-abelian or
the direct product of two isomorphic non-abelian simple groups,
and |G : H| = 2.

Potočnik, JCTB, 2004

The Petersen graph is the only vertex-transitive snark containing a
solvable transitive subgroup of automorphisms.
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Snarks

The hunting for vertex-transitive/Cayley snarks is essentially a
special case of the Lovász question (1969) regarding hamiltonian
paths/cycles.

Existence of a hamiltonian cycle implies that the graph is 3-edge
colorable, and thus a non-snark.

Hamiltonicity problem is hard, the snark problem is hard too, but
should be easier to deal with.

Klavdija Kutnar



The Coxeter graph is not a snark

vs

the Coxeter graph is not hamiltonian
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The Coxeter graph is not a snark (easy)

vs

the Coxeter graph is not hamiltonian (harder)
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Cayley snarks

Types of cubic Cayley graphs Cay(G ,S):

Type 1: S consists of 3 involutions;

no snarks.

Type 2: S = {a, x , x−1}, where a2 = 1 and x is of even order;

no snarks.

Type 3: S = {a, x , x−1}, where a2 = 1 and x is of odd order.

The general case still open. We will give an argument in the special
case when the order of ax is 3 (smallest nontrivial case).
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II. Independent sets in cubic graphs
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Independent sets and their complements in cubic graphs

Restriction to cyclically 4-edge-connected cubic graphs.

Given a connected graph X , a subset F ⊆ E (X ) is called
cycle-separating if X − F is disconnected and at least two of its
components contain cycles. We say that X is cyclically
k-edge-connected if no set of fewer than k edges is
cycle-separating in X .
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Independent sets and their complements in cubic graphs
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Independent sets and their complements in cubic graphs
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Payan, Sakarovitch, 1975

Payan, Sakarovitch, 1975

Let X be a cyclically 4-edge-connected cubic graph of order n, and let S
be a maximum cyclically stable subset of V (X ). Then
|S | = b(3n − 2)/2c and more precisely, the following hold.

If n ≡ 2 (mod 4) then |S | = (3n − 2)/4, and X [S ] is a tree and
V (X ) \ S is an independent set of vertices;

If n ≡ 0 (mod 4) then |S | = (3n − 4)/4, either X [S ] is a tree and
V (X ) \ S induces a graph with a single edge, or X [S ] has two
components and V (X ) \ S is an independent set of vertices.

a cyclically stable subset = induces a forest
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III. Non-existence of snarks amongst (2, s, 3)-Cayley graphs
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Partial results for Type 3 graphs

A (2, s, t)-generated group is a group
G = 〈a, x | a2 = x s = 1, (ax)t = 1, . . .〉.

A (2, s, t)-Cayley graph is a cubic Cayley graph on G wrt
S = {a, x , x−1}.
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Partial results for Type 3 graphs

Glover, KK, Malnič, Marušič, 2007-11

A (2, s, 3)-Cayley graph has

a Hamilton cycle when |G | is congruent to 2 modulo 4,

a Hamilton cycle when |G | ≡ 0 (mod 4) and either s is odd or
s ≡ 0 (mod 4), and

a cycle of length |G | − 2, and also a Hamilton path, when
|G | ≡ 0 (mod 4) and s ≡ 2 (mod 4).

Corollary

There are no snarks amongst (2, s, 3)-Cayley graphs.
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Proof strategy

To a (2, s, 3)-Cayley graph X we associate a Cayley map M(X ) of
genus

1 + (s − 6)|G |/12s

with faces |G |/s disjoint s-gons and |G |/3 hexagons.
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Soccer ball

(2, 5, 3)-Cayley graph of A5 = 〈a, x | a2 = x5 = (ax)3 = 1〉.
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Proof strategy

To X we associate a ‘quotient graph’, the so-called hexagon graph
Hex(X ), whose vertices are hexagons in M(X ) with adjacencies
arising from neighboring hexagons.

(2, 4, 3)-Cayley graph of S4 = 〈a, x | a2 = x4 = (ax)3 = 1〉.
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Proof strategy

(2, 8, 3)-Cayley graph of Q8 o S3.
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Hamiltonicity of (2, s, 3)-Cayley graphs

A (2, 6, 3)-generated group
S3 × Z3

∼= 〈a, x | a2 = x6 = (ax)3 = 1, . . .〉, where a = ((12), 0)
and x = ((13), 1).
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Hamiltonicity of (2, s, 3)-Cayley graphs

A (2, 4, 3)-generated group S4 ∼= 〈a, x | a2 = x4 = (ax)3 = 1〉,
where a = (12) and x = (1234).
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Induced forest in (2, 4, 3)-Cayley graph

A (2, 4, 3)-generated group S4 ∼= 〈a, x | a2 = x4 = (ax)3 = 1〉,
where a = (12) and x = (1234).
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Proof strategy

Hex(X ) is a cubic arc-transitive graph (with the Cayley group G of
X acting 1-regularly on Hex(X )).

For cubic arc-transitive graphs (other then K4) a result of Nedela
and Škoviera (1995) implies cyclic 4-edge connectivity and so
Payan-Sakarovitch theorem holds.

Proposition

Let Y be a cubic arc-transitive graph. Then one of the following
occurs.

The girth g(Y ) of Y is at least 6; or

Y is one of the following graphs: the theta graph θ2, K4,
K3,3, the cube Q3, the Petersen graph GP(5, 2) or the
dodecahedron graph GP(10, 2).
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and Škoviera (1995) implies cyclic 4-edge connectivity and so
Payan-Sakarovitch theorem holds.

Proposition

Let Y be a cubic arc-transitive graph. Then one of the following
occurs.

The girth g(Y ) of Y is at least 6; or

Y is one of the following graphs: the theta graph θ2, K4,
K3,3, the cube Q3, the Petersen graph GP(5, 2) or the
dodecahedron graph GP(10, 2).

Klavdija Kutnar



Proof strategy

Hex(X ) is a cubic arc-transitive graph (with the Cayley group G of
X acting 1-regularly on Hex(X )).

For cubic arc-transitive graphs (other then K4) a result of Nedela
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No snarks amongst (2, s, 3)-Cayley graphs

Corollary of Payan-Sakarovitch result for graphs

Let X be a cyclically 4-edge connected cubic graph of order
n ≡ 0 (mod 4). Then there exists a cyclically stable subset S of V (X )
such that X [S ] is a forest and V (X ) \ S is an independent set of vertices.

⇒ There are no snarks amongst (2, s, 3)-Cayley graphs. �
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Example of a (2, s, 3)-Cayley graph

X = Cay(A5, {a, x}) where a = (12)(34) and x = (12345) (s = 5,

genus= 0).
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From X to Hex(X )
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From Hex(X ) to X
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Example of a (2, s, 3)-Cayley graph
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IV. Snarks and (2, s, t)-Cayley graphs
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Method for (2, s, t)-Cayley graphs, t > 3

To a (2, s, t)-Cayley graph X we associate a Cayley map M(X )
with s-gonal and 2t-gonal faces.

Further, to X we associate a ‘quotient graph’, the so-called
2t-gonal graph X2t , whose vertices are 2t-gons in M(X ) with
adjacencies arising from neighboring 2t-faces. Note that X2t is a
t-valent arc-transitive graph admitting a 1-regular subgroup with a
cyclic vertex-stabilizer Zt .
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Sufficient conditions (in X2t) for hamiltonicity / 3-edge colorability
of X :

If the vertex set V of X2t decomposes into (I ,V − I ) with I
independent set and V − I induces a tree then X contains a
Hamiltonian cycle.

If the vertex set V of X2t decomposes into (I ,V − I ) with I
independent set and V − I induces a bipartite graph then X is
3-edge colorable. (If X2t is near-bipartite than X is not a
snark.)
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(2, s, 4)-Cayley snarks

Non-near-bipartite tetravalent arc-transitive graphs admitting a 1-regular
subgroup with a cyclic vertex-stabilizer Z4: K5, octahedron,
Cay(Z13, {±1,±5}).

Are there other such graphs?

Heuberger, Discrete Math, 2003

Let X = Cn(a, b) be a tetravalent circulant of order n then

χ(X ) =


2 if a and b are odd and n is even
4 if 3 - n, n 6= 5, and (b ≡ ±2a (mod n)) or a ≡ ±2b (mod n)
4 if n = 13 and (b ≡ ±5a (mod 1)3 or a ≡ ±5b (mod 1)3)
5 if n = 5
3 otherwise

.
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(2, s, 4)-Cayley snarks

Problem

Classify tetravalent arc-transitive graphs with chromatic number 4
admitting a 1-regular subgroup with a cyclic vertex-stabilizer Z4.
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Announcement 1

PhD and Postdoc Summer School in Discrete Mathematics

June 24 to June 30, 2012, Rogla, Slovenia

June 27, 2012:

SYGN 2012 Symmetries of Graphs and Networks (Banff 3)
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Announcement 2

Computers in Scientific Discovery 6 (CSD6)

August 21 to August 25, 2012, Portorož, Slovenia
http://csd6.imfm.si, csd6@upr.si

The list of keynote speakers includes:

Nobelist Harold Kroto (not confirmed), Gunnar Brinkmann, Arnout

Ceulemans, Ernesto Estrada, Patrick Fowler, Ante Graovac, Bojan

Mohar, Dragan Stevanović, Ian Wanless, Jure Zupan.
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Announcement 3

ARS MATHEMATICA CONTEMPORANEA

Proceedings of

Bled’11 - 7th Slovenian International Conference on Graph Theory

The deadline for submission is November 30, 2011.

In appreciation of your service to 

the Journal Ars Mathematica Contemporanea

as Founding Editor and Editor-in-Chief (2007–2011)
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Thank you!
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