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Binary relations

Let R,S ⊆ Ω2 be binary relations. Then

S∗ := {(α, β) | (β, α) ∈ S};
S is symmetric (antisymmetric) if S = S∗ (S ∩ S∗ = ∅ resp.);

αS := {β | (α, β) ∈ S},Sα := αS∗;

D(S) := {α ∈ Ω |αS 6= ∅},R(S) := D(S∗);

RS = {(α, β) |αR ∩ Sβ 6= ∅};
R+ =

⋃∞
i=1 R

i is the transitive closure of R;

1Ω := {(ω, ω) |ω ∈ Ω}
Each permutation g ∈ Sym(Ω) is considered as a binary relation.
Thus αg = {αg} and g∗ = g−1.



Partitions.

P ` Ω means that P is a partition of Ω.

P v C ⇐⇒ C is a refinement of P;

Lattice operations are denoted as P ∨ C and P ∧ C;

if P ` Ω then P∪ denotes the set of all possible unions of
elements in P;

C ` Ω2 =⇒ C∗ := {C ∗ |C ∈ C};



Graphs.

In what follows graph is a pair Γ = (Ω,E ) where Ω is a finite set of
vertices and E ⊂ Ω× Ω is the set of (directed) edges/arcs.

Definition.

Graphs Γ1 = (Ω1,E1) and Γ2 = (Ω2,E2) are called isomorphic,
Γ1
∼= Γ2, if there is a bijection f : Ω1 → Ω2 such that

∀α1, β1 ∈ Ω1 : (αf
1, β

f
1 ) ∈ E2 ⇔ (α1, β1) ∈ E1.

Such a bijection is called an isomorphism from Γ1 to Γ2; the set of
all of them is denoted by Iso(Γ1, Γ2).The set Iso(Γ1, Γ1) is known
as the automorphism group of Γ1, notation Aut(Γ1).
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An isomorphism

f =

(
1 2 3 4 5 6
1 3 5 2 4 6

)

Aut(Γ) = (S3 × S3).S2.
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The Graph Isomorphism Problem (ISO).

ISO is to find the computational complexity of the problem:

ISO(Γ1, Γ2): given graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection
f : Ω1 → Ω2 one can test in time O(n2) whether
f ∈ Iso(Γ1, Γ2).
Therefore ISO∈NP.
An exhaustive search of all the possible bijections runs in
exponential time O(n!).
At present it is not known whether ISO∈P.

The proof of the time bound of the best algorithm (up to now) for
the ISO depends on the Classification of Finite Simple Groups.

Theorem (L.Babai, E.Luks and W.Kantor, 1984).

The isomorphism of n-vertex graphs can be tested in time
exp(O(

√
n log n)).
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Some problems equivalent to the ISO (R.Mathon,1979).

The following problems are equivalent to the ISO:

ICOUNT: given Γ and Γ′ find | Iso(Γ, Γ′)|,

ACOUNT: given Γ find |Aut(Γ)|,
AGEN: given Γ find generators of the group Aut(Γ),

APART: given Γ find Orb(Aut(Γ)).
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Isomorphism problem for colored graphs.

Definition.

A triple (Ω,Y , c) where c : Ω2 → Y is a surjection, is called a
colored graph with the coloring function c and color classes
c−1(y), y ∈ Y . Each colored graph determines a partition
C := {c−1(y) | y ∈ Y } of Ω2.

Two colored graphs (Ω,Y , c) and (∆,Z , d) are isomorphic iff
there exist bijections f : Ω→ ∆,φ : Y → Z s.t.

d(αf , βf ) = c(α, β)φ.

Notice that φ is uniquely determined by f . For this reason we
define f ∗ := φ.
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Isomorphism problem for colored graphs.

We also set Iso(Ω,Y , c) for the group of all isomorphisms from
(Ω,Y , c) to itself and Aut(Ω,Y , c) for the normal subgroup of
Iso(Ω,Y , c) which does not interchanges the colors (that is
f ∗ = 1Y ).

Proposition

Let (Ω,Y , c) be a colored graph and C := {c−1(y) | y ∈ Y } be the
corresponding partition. Then

Iso(Ω,Y , c) = {g ∈ Sym(Ω) | Cg = C},
Aut(Ω,Y , c) = {g ∈ Sym(Ω) | ∀C∈CC g = C}.

Theorem.

Isomorphism problem for colored graphs is polynomially equivalent
to ISO.



Cayley Graphs and their Isomorphisms.

A Cayley graph over a finite group H defined by a connection set
S ⊆ H has H as a set of nodes and arc set

Cay(H,S) := {(x , y) | xy−1 ∈ S}

.
A circulant graph is a Cayley graph over a cyclic group.

Definition

Two Cayley graphs Cay(H,S) and Cay(K ,T ) are Cayley
isomorphic if there exists a group isomorphism f : H → K which is
a graph isomoprhism too, that is

Cay(H, S)f = Cay(K ,T ) ⇐⇒ S f = T .



Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E ) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.



Isomorphism problems for Cayley graphs.

Given Γ = Cay(H,S) and Γ′ = Cay(H,S ′):

IMAP: find f ∈ Iso(Γ, Γ′) (if it exists),

ICOUNT: find | Iso(Γ, Γ′)|,
ACOUNT:find |Aut(Γ)|,
AGEN: find generators of the group Aut(Γ),

CGR: given a graph Θ find whether it’s a Cayley graph over a
group H.



Isomorphism problem for finite groups.

Construction. Let K be a finite group.

Define a graph Γ(K ) with vertex set K × K and edges:
(a, b) ∼ (c , d) ⇐⇒ a = c ∨ b = d ∨ ab = cd .

Theorem K1
∼= K2 ⇐⇒ Γ(K1) ∼= Γ(K2).

Exercise. Prove that Γ(K ) is a Cayley graph over K × K .

Exercise. Prove that Γ(Z4) 6∼= Γ(Z2 × Z2).

Z4 →

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Z2 × Z2 →

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The isomorphism of groups of order n can be tested in time
nO(log n).
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Naive vertex classification.

Vertex partition by valences.

Denote by dΓ(α) the valency of the vertex α in the graph Γ;the
valency of α in a color class is denoted by dΓ(α,C ).

To find Orb(Aut(Γ)) put vertices α and β in the same class iff
dΓ(α) = dΓ(β).

Iteratively, put vertices α and β in the same class iff
dΓ(α,C ) = dΓ(β,C ) for all color classes C .

Comments.

The algorithm correctly finds Orb(Aut(Γ)) for the class of
trees (G.Tinhofer, 1985), for almost all graphs (L.Babai,
P.Erdös, S.Selkow, 1980).

The algorithm fails when Γ is a regular graphs and the group
Aut(Γ) is intransitive.
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The Weisfeiler-Leman algorithm, 1968.

No automorphism moves red points to blue ones.

• • •
•

• • •

To distinguish vertices we need to color edges of Γ.

Algorithm. Set C = {1Ω} ∪ {E} ∪ {(Ω× Ω) \ E}.

For all (α, β) ∈ Ω× Ω and R,S ∈ C find the number

c(α, β;R,S) = |αR ∩ Sβ|.

Build a new partition Y(C) by putting (α, β) and (α′, β′) to
the same class of Y(C) if |αR ∩ Sβ| = |α′R ∩ Sβ′| for all
R,S ∈ C.

Repeat the procedure till |C| stops to increase.
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The matrix A is stable, that is A2 produces the same coloring as A
does.
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WL-refinement (operation Y)

Properties

C v S =⇒ Y(C) v Y(S);

C∗ = C =⇒ Y(C)∗ = Y(C);

1Ω ∈ C∪ =⇒ C v Y(C);

Proposition

Let f : Ω→ ∆ be a bijection that maps a partition C of Ω2 onto a
paritition T of ∆2 (i.e. Cf = T ). Then Y(C)f = Y(T ).

Given an ordered partition ~C = (S1, ...,Sm) of Ω2 the
WL-algorithm produces a unique (canonical) ordering of the
refinement Y(C) (denoted as Y(~C)) with the following property:

~Cf = ~T =⇒ Y(~C)f = Y(~T )
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Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,
the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.
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Coherent configurations: a concrete example.
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Coherent configurations. Fibers and relations.

A fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ C; the set of all fibers
is denoted by Φ = Φ(X ).

Thus X is a scheme iff |Φ| = 1.

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆,

for any S ∈ C the sets D(S) and R(S) are fibres of X ,

for any S ∈ C and α ∈ D(S) we have |αS | = cTSS∗ where
T = 1D(S).

for any fiber ∆ ∈ Φ the set of relations
C∆ := {C ∈ C |D(C ) = ∆,R(C ) = ∆} form a homogeneous
co.co. on ∆, called a homogeneous constituent of C.

The number nS = cTSS∗ is called the valency of S .
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Properties of coherent configurations.

Proposition

Let X = (Ω, C) be a co.co. Then

the set C∪ is closed w.r.t. boolean operations;

1Ω,Ω
2 ∈ C∪;

(C∪)∗ = C∪;

C∪ is closed w.r.t. relational product;



Isomorphisms between coherent configurations

Definition

Two coherent configuration X = (Ω, C) and X ′ = (Ω′, C′) are
called (combinatorially) isomorphic iff there exist bijections
f : Ω→ Ω′, φ : C → C′ such that

∀α,β∈Ω (α, β) ∈ C ⇐⇒ (αf , βf ) ∈ Cφ.

The set of all isomorphisms between X and X ′ is denoted as
Iso(X ,X ′). Notice that φ is uniquely determined by f .

In what follows we set Iso(X ) := Iso(X ,X ). We call the elements
of this group colored automorphisms of the configuration.



Coherent configurations generated by a graph.

The mapping (f , φ) 7→ φ is an group homomorphism from Iso(X )
into Sym(C). The kernel of this homomorphism denoted as
Aut(X ) is called the the automorphism group of X :

Aut(X ) = {f ∈ Sym(Ω) : S f = S for all S ∈ C}

Theorem

Let 〈〈Γ〉〉 be the WL-closure of a graph Γ = (Ω,E ) obtained by
applying WL-algorithm to Γ. Then

E ∈ 〈〈Γ〉〉∪;

Aut(Γ) = Aut(〈〈Γ〉〉).
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Examples. Strongly regular graphs.

Definition

A graph Γ = (Ω,E ) is called strongly regular if its WL-closure has
rank three. In other words, WL-algorithm stops at the first
iteration and 〈〈Γ〉〉 = {1Ω,E ,E

c}.

Proposition

A graph Γ = (Ω,E ) is strongly regular if and only if there exists
non-negative integers k , λ, µ such that

1 Γ is k-regular,

2 any pair of points connected by an edge have λ common
neighbours,

3 any pair of points not connected by an edge have µ common
neighbours
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Examples. Permutation groups.

Let G ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)g := (αg , βg ), α, β ∈ Ω, g ∈ G .

Set Inv(G ) := (Ω, C) where C := Orb(G ,Ω× Ω). Then

1 Inv(G ) is a coherent configuration (of G ),

2 the basic relations of X are the 2-orbits of G ,

3 Φ(X ) = Orb(G ,Ω), in particular X is a scheme iff G is
transitive;

Definition.

A coherent configuration X is called schurian if X = Inv(G ) for
some group G .

Schurity problem

Given a coherent configuration X , find whether it is schurian.
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Given a coherent configuration X , find whether it is schurian.
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Galois correspondence.

Definition

Let X = (Ω, C),X ′ = (Ω, C′) be two coherent configuratios. We
say that X is a fusion of X ′ (equivalently X ′ is a fission of X ),
notation X v X ′ if C v C′.

Proposition

Let X ,X ′ be two coherent configurations defined on Ω and
G ,H ≤ Sym(Ω) arbitrary subgroups. Then

X v X ′ =⇒ Aut(X ) ≥ Aut(X ′);

H ≤ G =⇒ Inv(H) w Inv(G );

G ≤ Aut(Inv(G );

X v Inv(Aut(X ))



Galois correspondence.

Definition

Let X = (Ω, C),X ′ = (Ω, C′) be two coherent configuratios. We
say that X is a fusion of X ′ (equivalently X ′ is a fission of X ),
notation X v X ′ if C v C′.

Proposition

Let X ,X ′ be two coherent configurations defined on Ω and
G ,H ≤ Sym(Ω) arbitrary subgroups. Then

X v X ′ =⇒ Aut(X ) ≥ Aut(X ′);

H ≤ G =⇒ Inv(H) w Inv(G );

G ≤ Aut(Inv(G );

X v Inv(Aut(X ))



Galois closed objects.

Definition

The group G (2) := Aut(Inv(G )) is called a 2-closure of
G ≤ Sym(Ω). A group is called 2-closed if G = G (2).

Definition

Given a coherent configuration X = (Ω, C), the configuration
Sch(X ) := Inv(Aut(X )) is called a Schurian closure of X . A
configuration X is schurian iff Sch(X ) = X .

Theorem

The mappings (Aut, Inv) are bijections between 2-closed subgroups
of Sym(Ω) and schurian coherent configurations defined on Ω.

Theorem.

The ISO is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.
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