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—— Abstract

A large number of NP-hard graph problems become polynomial-time solvable on graph classes where the mirm

width
nce, when solving such problems on special graph classes, it is helpful to

is bounded and quickly computable. F

know whether the graph class under consideration has these two properties. We first extend the toolkit for proving

(un)boundedness of mim-wid

of graph classes. This enables us to initiate a systematic study into bounding

-width from the perspective of hereditary graph classes.
We show that for a given graph H, the class of H-free

show that the same is not true for (Hy, Ha)-free graphs. To be more precise, for

phs has bounded mim-width if and only if it has

bounded clique-width. We the

graphs G and G

be the graph obtained from the disjoint union of Gy and Gz

by adding r edges betweer Gt forn a perfct matching, Let (s, ) be one o the following
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ndr+t26
2and r +

It is known that each of the above classes of (Hs, H:

free graphs b that each

unbounded clique-width. We prov

of them has boun

width. As a consequence, we classified all pairs (Hy, Ha) with |V (Hy)] + |V (Ho)| <8

Morcover, we prove that the mim-width for each of the above classes of (H:

freo graphs is quickly computable

That is, we prove there is a poly

algorithm for computing a branch decomposition of constant mim-

width. For the first three (infinite) families of classes of (Hy, Ha)-free graphs, we show that the mim-width of

any branch decomposition is bounded by a constant, and hence it suffices to compute one arbitrarily. For the
latter two cases, we show how to compute a branch decomposition of cnstant mim-width in polynomial time
He

graphs,

e, these results have algorithmic implications: when the input is restricted to such a elass of (Hy, Ha)-free

problems become polynomial-time solvable, including classical problems such as k-COLOURING and
ns known as LC-VSVP problems, and distance versions of LC-VSVP
problems, to name just a few. We also prove a number of new results showing that, for certain Hy and Ha, the
class of (Hy, Ha)-free graphs has unbounded mim-width

Bor

with th

INDEPENDENT SET, domination-type probl

\dedness of clique-width implies boundedness of m

width. By combining our new reslts for mim-width

known bounded

s for clique-width, we present summary theorems of the current state of the art for
the boundedness of m

p-width for (H, Ha)-free graphs. In particular, we have classified all pairs (H, Hz) where

Hy and Hz are connected graphs, except for one remaining infinite family and a few isolated cases.
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The following NP-hard problems are polynomial-time solvable on triad-convex graphs:

e DOMINATING SET (Pandey and Panda 2019)
e INDEPENDENT DOMINATING SET (Luetal. 2013)
e CONNECTED DOMINATING SET (Liu et al. 2015)
e DOMINATING INDUCED MATCHING (Panda and Chaudhary 2019)
e FEEDBACK VERTEX SET (Jiang et al. 2013)
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The following NP-hard problems are polynomial-time solvable on triad-convex graphs:

e DOMINATING SET (Pandey and Panda 2019)

e INDEPENDENT DOMINATING SET (Luetal. 2013)

e CONNECTED DOMINATING SET (Liu et al. 2015)

e DOMINATING INDUCED MATCHING (Panda and Chaudhary 2019)

o FEEDBACK VERTEX SET (Jiang et al. 2013)
Theorem

The problems above are polynomial-time solvable on graphs of bounded mim-width.

Theorem (Brettell, M., Paulusma 2020+)
Triad-convex graphs have bounded mim-width.
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Dynamic Programming and Width Parameters
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Treewidth

aef

abe cde

abg

Tree decomposition of G: pair (T, {B; : t € V(T)}), where T is a tree and B; C V(G) for each
t € V(T) (bag) satisfying the following:

e each vertex of Gisin at least one bag B;,

e foreach uv € E(G), there exists a bag containing both u and v,

e foreachv € V(G), bags containing v form a subtree of T.

Width of a tree decomposition: maxcy(ry |Bt| — 1.

Treewidth of G: minimum width of a tree decomposition of G.
5/30



DP on tree decompositions: Independent Set

NP-hard to determine the treewidth of a graph (Arnborg et al. 1987).

2°0)) . p time algorithm that finds a tree decomposition of width w (Bodlaender 1996).
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DP on tree decompositions: Independent Set

NP-hard to determine the treewidth of a graph (Arnborg et al. 1987).

2°0)) . p time algorithm that finds a tree decomposition of width w (Bodlaender 1996).

aef

ace

abe cde

abg

compute 2/8 < 2"+ values for each bag B:.
M][t, S]: max size of independent set | C V; (vertices in subtree rooted at t) with /N B; = S.

Solve bottom-up: at most 2“*" - n subproblems M[t, S], each of them can be solved in
constant time (assuming the children are already solved).
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Treewidth, clique-width and co.

Clique-width ~~ k-expression.
The modelling power of clique-width is stronger than that of treewidth:

cw(G) < 3- A O (Corneil and Rotics 2005)

Theorem (Courcelle, Makowsky, Rotics 2000)

Every problem expressible in MSOL, can be solved in polynomial time on graphs of
clique-width at most k, provided a k-expression is given as part of the input.

Theorem (Oum and Seymour 2006)

There exists a polynomial-time algorithm for computing a (22t — 1)-expression of a graph
having clique-width at most k.

Treewidth is equivalent to branch-width: bw(G) < tw(G) < 2bw(G) — 1 (Robertson and
Seymour 1991)

Clique-width is equivalent to rank-width: rw (G) < cw(G) < 2°(©*" — 1 (Oum and Seymour
2006)
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Decomposition of graphs

e Natural approach to dynamic programming: recursively partition the vertices of the
graph into two parts.

e Decomposition of G can be stored as a binary tree whose leaves are in bijection with
vertices of G.

e Need to store multiple sub-solutions at each intermediate node ~~ structure of the
cuts is crucial to runtime.
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Mim-width
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Branch decomposition for G: (T, §) where T is subcubic tree and 4 is bijection between
vertices of G and leaves of T. Each e € E(T) represents partition (e, Ac) of V(G).

mimwe (T, §): maxecg(r) size of maximum induced matching in G[Ae, Ae].

mimw(G): min value of mimwg(T, §) over all possible branch decompositions (T, §) for G.
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Mim-width of interval graphs

Interval graph: intersection graph of a family of intervals on the real line.
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Mim-width of interval graphs

Interval graph: intersection graph of a family of intervals on the real line.

Theorem (Belmonte, Vatshelle 2013)

mimw(G) < 1, for any interval graph G. Moreover, a branch decomposition of
mim-width at most 1 can be computed in linear time.
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Mim-width of interval graphs

Interval graph: intersection graph of a family of intervals on the real line.

Theorem (Belmonte, Vatshelle 2013)

mimw(G) < 1, for any interval graph G. Moreover, a branch decomposition of
mim-width at most 1 can be computed in linear time.
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Why mim-width?

mimw(G) < cw(G) (vatshelle 2012)

bounded mimw

bounded cw

bounded tw
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e Bad News. Computing a branch decomposition with optimal mim-width is
NP-complete. Determining the optimal mim-width is unlikely to be in APX.
(Saether and Vatshelle 2016)
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Why mim-width?

mimw(G) < cw(G) (vatshelle 2012)

Locally checkable vertex subset problems
(INDEPENDENT SET, DOMINATING SET, TOTAL
DOMINATING SET, ...) are in P for classes
with bounded mim-width, provided a
branch decomposition is given.

(Bui-Xuan et al. 2013)

bounded mimw

bounded cw

bounded tw

e Bad News. Computing a branch decomposition with optimal mim-width is
NP-complete. Determining the optimal mim-width is unlikely to be in APX.
(Saether and Vatshelle 2016)

e Good News. Can find branch decomposition of constant mim-width in polynomial
time for: interval graphs, permutation graphs, convex graphs, trapezoid graphs,
circular permutation graphs, circular arc graphs, leaf powers, ...
(Belmonte and Vatshelle 2013)
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LCVS problems

Given finite or co-finite subsets o, p of Nand a graph G, S C V(G) isa (o, p)-set if:

e [N(v)NS| € o,foreachv € S;

e |[N(v)N S| € p,foreachv € V(G)\ S.
Locally checkable vertex subset problem: find a min or max (o, p)-setin input graph
G (Telle and Proskurowski 1997).

Distance-r locally checkable vertex subset problem: replace N(v) with N'(v) (Jaffke et
al. 2020).

[o » d Standard name
{0} N 1 Independent set *
N N+ 1 Dominating set
{0} N* 1 Maximal Independent set #x
N+ N+ 1 Total Dominating set *x
{0} {0,1} 2 Strong Stable set or 2-Packing
{0} {1} 2 Perfect, Code or Efficient Dom. set,
{0,1} {0,1} 2 Total Nearly Perfect set
{0,1} {1} 2 Weakly Perfect Dominating set
{1} {1} 2 Total Perfect Dominating set
{1} N 2 Induced Matching
{1} N+ 2 Dominating Induced Matching x, »x
N {1} 2 Perfect Dominating set
N {dd+1,.} | d d-Dominating set %x
{d} N d+1 | Induced d-Regular Subgraph
{dd+1,.} | N d Subgraph of Min Degree > d
{0,1,....d} |N d+1 | Induced Subg. of Max Degree < d % 13/30

(Jaffke et al. 2020)



LCVS problems and mim-width

Theorem (Bui-Xuan et al. 2013)

There is an algorithm that, given a graph G and a branch decomposition (T, &) for
G with w = mimw(T, 9), solves each LCVS problem in O(n**>™) time.

14/30



LCVS problems and mim-width

Theorem (Bui-Xuan et al. 2013)
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Theorem (Jaffke et al. 2020)

There is an algorithm that for all r € N, given a graph G and a branch
decomposition (T, ¢) for G with w = mimw¢(T, ¢), solves each distance-r LCVS
problem in O(n*"%) time.
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LCVS problems and mim-width

Theorem (Bui-Xuan et al. 2013)

There is an algorithm that, given a graph G and a branch decomposition (T, &) for
G with w = mimw(T, 9), solves each LCVS problem in O(n**>™) time.

Theorem (Jaffke et al. 2020)

There is an algorithm that for all r € N, given a graph G and a branch
decomposition (T, ¢) for G with w = mimw¢(T, ¢), solves each distance-r LCVS
problem in O(n*"%) time.

Solving distance-r LCVS on G is the same as solving distance-1LCVS on G'.
Moreover, mimw(G") < 2mimw(G).

Theorem (Fomin et al. 2018)

INDEPENDENT SET and DOMINATING SET are W[1]-hard parameterized by
mimw (G) and solution size.

14/30



Beyond LCVS problems

e LONGEST INDUCED PATH

e INDUCED DISJOINT PATHS

e FEEDBACK VERTEX SET

e SUBSET FEEDBACK VERTEX SET

e NODE MULTIWAY CUT

e Connected variants of LCVS problems

e SEMITOTAL DOMINATING SET

(Jaffke et al. 2020)

(Jaffke et al. 2020)

(Jaffke et al. 2020)
(Bergougnoux et al. 2020)
(Bergougnoux et al. 2020)
(Bergougnoux and Kanté 2019)

(Galby, M., Ries 2020)
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Semitotal Domination
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Domination parameters

e dominating set: S C V(G) such that each vertexin V(G) \ S has a neighbourin S.
For a graph with no isolated vertex:

o total dominating set: a dominating set S such that each vertex in S has a neighbourin S.

e semitotal dominating set: a dominating set S such that each vertex in S is within
distance two of another.
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Domination parameters

e dominating set: S C V(G) such that each vertexin V(G) \ S has a neighbourin S.
For a graph with no isolated vertex:

o total dominating set: a dominating set S such that each vertex in S has a neighbourin S.

e semitotal dominating set: a dominating set S such that each vertex in S is within
distance two of another.

7(G) < 72(G) < %(G)
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From semitotal to total

Theorem (Galby, M., Ries 2020)

There is an algorithm that, given a graph G and a branch decomposition (T, §) for G with
w = mimwg(T, ), Solves SEMITOTAL DOMINATING SET in O(n*™") time.
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There is an algorithm that, given a graph G and a branch decomposition (T, §) for G with
w = mimwg(T, ), Solves SEMITOTAL DOMINATING SET in O(n*™") time.

Idea: Find a bounded mim-width preserving reduction from SEMITOTAL DOMINATING SET to
TOTAL DOMINATING SET.

e Let G be the input graph and (T, §) the given branch decomposition with
w = mimwg(T, d).
e Compute an appropriate G’ such that:
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18/30



From semitotal to total

Theorem (Galby, M., Ries 2020)
There is an algorithm that, given a graph G and a branch decomposition (T, §) for G with
w = mimwg(T, ), Solves SEMITOTAL DOMINATING SET in O(n*™") time.

Idea: Find a bounded mim-width preserving reduction from SEMITOTAL DOMINATING SET to
TOTAL DOMINATING SET.

e Let G be the input graph and (T, §) the given branch decomposition with
w = mimwg(T, d).
e Compute an appropriate G’ such that:
e 712(G) = v(G’") and a min semi-TD-set of G can be obtained from a min TD-set of G’ in
linear time.
e G’ has a branch decomposition (77, ") with mimwg/ (77, 6") < 2w.
e Both G’ and (T’,§") can be computed in O(n?) time.
e Find a min TD-set of G’ with given branch decomposition (7', 6") by (Bui-Xuan et al.
2013).
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From semitotal to total: v, (G) = 1:(G')

G = (V,E)
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Vi true twins

GZ

.

G=(V,E) .

7(G") < 40(G): If Sis a semi-TD-set of G, then S = {v, € I, : v € S}isa TD-set of G'.

72(G) < (G'): Let S’ be a min TD-set of G’. Wlog, v; and v, are not both in S'.

e S={veV:{vi,n}NS # a}isasemi-TD-set of G.

19/30



From semitotal to total: if G has bounded mim-width, then G’ has

Lemma (Galby, M., Ries 2020)
For any graph G not isomorphic to tK;, mimw(G') < 2 - mimw(G).
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From semitotal to total: if G has bounded mim-width, then G’ has

Lemma (Galby, M., Ries 2020)
For any graph G not isomorphic to tK;, mimw(G') < 2 - mimw(G).

/\ /\

20/30



A broader view

line graph
of bipartite

‘comparability‘ ‘tolerance?

co-comparability ?

‘ strongly chordal ?

k-trapezoid ‘

permutation

bipartite permutation

‘ trapezoid ‘ ‘ circular arc‘

‘ bounded tolerance ‘

‘ distance hereditary ‘

‘cograph ‘ [Dilworth k|

threshold

interval

k-tree, fixed k
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Structural Properties
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Behavior wrt graph operations

Lemma (Vatshelle 2012, BHMPP 2020+)

e Vertex deletion: mimw(G) — 1 < mimw(G — v) < mimw(G).

e 1-subdivision of e € E(G): mimw(G) < mimw(G") < mimw(G) + 1.
Clique implantonv € V(G): mimw(G) < mimw(G') < mimw(G) + d(v).

k-partite partial complementation: mimw (G') > R o~ o - mimw (G).

Blocks: mimw(G) = max{mimw (H) : His a block of G}. Moreover, given
branch decompositions of each block of G with mim-width at most k, we can
compute a branch decomposition for G with mim-width at most k in poly time.

“ - F _ G
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Theorem (BHMPP 2020+)

Let W be an elementary (n x n)-wall withn > 7.
Then mimw (W) > %,
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Theorem (BHMPP 2020+)

Let W be an elementary (n x n)-wall withn > 7.
Then mimw (W) > %,

\%
EX
=

\%
EX
=

If G[A, A] is d-degenerate and has matching of size m, then G[A, A] has induced matching of
size m/(d + 1) (vatshelle 2012)
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i
=

k> /2 comp.

3
H: subgraph of W[Ae, Ae] induced by bold edges

~~ Each component of H has size n; > 2 and a
matching of size > (n; — 1) /3 > n;/6 (Bied! etal. 2004)

~ H has a matching of size

= >5>
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The following graph classes have unbounded mim-width:

e Co-bipartite (Mengel 2018)
e Split (Mengel 2018)
e Strongly chordal (Mengel 2018)
e Chordal bipartite (Brault-Baron et al. 2015)
e Circle (Kang et al. 2017)
e Co-comparability (Kang et al. 2017)
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The following graph classes have unbounded mim-width:

e Co-bipartite (Mengel 2018)

e Split (Mengel 2018)

e Strongly chordal (Mengel 2018)

e Chordal bipartite (Brault-Baron et al. 2015)

e Circle (Kang et al. 2017)

e Co-comparability (Kang et al. 2017)
Theorem (BHMPP 2020+)

The class of H-free graphs has bounded mim-width if and only if H C; Pa.

o IfH C; P4, then H-free graphs are P,-free and so have clique-width at most 2
and hence mim-width at most 2.

e Suppose H is such that the class of H-free graphs has bounded mim-width.
~ His a (3P, 2P, )-free forest.
~s H C; Ps.
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(Hh, H,)-free graphs: New bounded cases

e Letr > 3. Forany (K. B rPy, 2P,)-free graph Gand any X C V(G),
cutmimg(X, X) < max{6,r}.

e Letr >1andt > 1. Forany (K, &5 Py, tP,)-free graph G and any X C V(G),
cutmimg(X, X) < R(r, R(r, t)).

e Letr > 1ands > 0. Forany (K. 5 K, sP; + P,)-free graph G and any X C V(G),
cutmimg (X, X) < R(R(r,s +1),s +1).

o IfGis (2P,, K 3)-free, then mimw(G) < 6 and we can construct in polynomial time a
branch decomposition (T, §) for G with mimw¢(T,0) < 6.

e IfGis (2P, + P,, bowtie)-free, then mimw(G) < R(14, 3) and we can construct in
polynomial time a branch decomposition (T, §) for G with mimwe(T, §) < R(14, 3).

]

L

o

- o

Complementation does not preserve mim-width: (4P;, 2P,)-free graphs have bounded

mim-width but (K4, C4)-free graphs have unbounded mim-width. o



Partial picture

Theorem (BHMPP 2020+)
Dichotomy when H, and H, are such that |V(H:)| + [V(H2)| < 8.

Theorem (BHMPP 2020+)
Let Hy and H, be forests. Dichotomy except for:

1. H1 :2P2 ande :K1,3—|—$P1 fOI’SZ 1,'
2. H] = 2P2 ande = 517172 =+ SP1 fors Z 0.
Theorem (BHMPP 2020+)

Let Hy and H, be connected graphs. Dichotomy except for:

1. Hy = PsandH, = Sia,0r Ky + sPiforr > 3ands € {1,2};
2. Hi=ProrSpjforh <i<j<A4withi+j <6 <h+i+jandH, = C;orpaw;

3. Hy = KizorSi1,, and H, = hammer.
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More open problems

e Characterize graphs of mim-width at most 1.

e Further extend mim-width ~» sim-width. Any problem poly-time solvable on
bounded sim-width graphs?

THE GENERALIZED LOCALLY CHECKABLE PROBLEM
IN BOUNDED TREEWIDTH GRAPHS

FLAVIA BONOMO-BRABERMAN AND CAROLINA LUCIA GONZALEZ

ABSTRACT. We introduce a new problem that generalizes some previous attempts of
covering locally checkable problems under the same umbrella. Optimization and deci-
soloring, ac
dominating set, can be seen as instances of this new problem.

sion problems such as {k}-dominating set, | clic coloring and connected

We prove that this new problem can be solved, under mild conditions, in polyno-
mial time for bounded treewidth graphs. As a consequence, we obtain polynomial-

time algorithms to solve, for bounded treewidth graphs, Grundy domination and
double Roman domination, among other problems for which no such algorithm was
previously known. Moreover, by proving that (fixed) powers of bounded degree and
bounded treewidth graphs are also bounded degree and bounded treewidth graphs,
we can enlarge the family of problems that can be solved in polynomial time for these
graph classes, including distance coloring problems and distance domination problems
(for bounded distances).

DM] 1 Jun 2020
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Thank you!
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