
Width parameters and graph classes: the case of mim-width

Andrea Munaro
June 15th, 2020

Queen’s University Belfast



Joint work:

2/30



Motivation

3/30

The following NP-hard problems are polynomial-time solvable on triad-convex graphs:

• DOMINATING SET (Pandey and Panda 2019)

• INDEPENDENT DOMINATING SET (Lu et al. 2013)

• CONNECTED DOMINATING SET (Liu et al. 2015)

• DOMINATING INDUCED MATCHING (Panda and Chaudhary 2019)

• FEEDBACK VERTEX SET (Jiang et al. 2013)

Theorem
The problems above are polynomial-time solvable on graphs of boundedmim-width.

Theorem (Brettell, M., Paulusma 2020+)
Triad-convex graphs have boundedmim-width.
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Tree decomposition of G: pair (T, {Bt : t ∈ V(T)}), where T is a tree and Bt ⊆ V(G) for each
t ∈ V(T) (bag) satisfying the following:

• each vertex of G is in at least one bag Bt,

• for each uv ∈ E(G), there exists a bag containing both u and v,

• for each v ∈ V(G), bags containing v form a subtree of T.

Width of a tree decomposition:maxt∈V(T) |Bt| − 1.

Treewidth of G: minimumwidth of a tree decomposition of G.



DP on tree decompositions: Independent Set
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NP-hard to determine the treewidth of a graph (Arnborg et al. 1987).

2O(w
3) · n time algorithm that finds a tree decomposition of widthw (Bodlaender 1996).
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compute 2|Bt| ≤ 2w+1 values for each bag Bt.

M[t, S]: max size of independent set I ⊆ Vt (vertices in subtree rooted at t) with I ∩ Bt = S.

Solve bottom-up: at most 2w+1 · n subproblemsM[t, S], each of them can be solved in
constant time (assuming the children are already solved).
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Treewidth, clique-width and co.
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Clique-width k-expression.

The modelling power of clique-width is stronger than that of treewidth:
cw(G) ≤ 3 · 2tw(G)−1 (Corneil and Rotics 2005)

Theorem (Courcelle, Makowsky, Rotics 2000)
Every problem expressible in MSOL1 can be solved in polynomial time on graphs of
clique-width at most k, provided a k-expression is given as part of the input.

Theorem (Oum and Seymour 2006)

There exists a polynomial-time algorithm for computing a (23k+2 − 1)-expression of a graph
having clique-width at most k.

Treewidth is equivalent to branch-width: bw(G) ≤ tw(G) ≤ 2
3bw(G)− 1 (Robertson and

Seymour 1991)

Clique-width is equivalent to rank-width: rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1 (Oum and Seymour

2006)



Decomposition of graphs
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• Natural approach to dynamic programming: recursively partition the vertices of the
graph into two parts.

• Decomposition of G can be stored as a binary treewhose leaves are in bijection with
vertices of G.

• Need to store multiple sub-solutions at each intermediate node structure of the
cuts is crucial to runtime.
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Branch decomposition for G: (T, δ)where T is subcubic tree and δ is bijection between
vertices of G and leaves of T. Each e ∈ E(T) represents partition (Ae, Ae) of V(G).

mimwG(T, δ):maxe∈E(T) size of maximum inducedmatching in G[Ae, Ae].

mimw(G): min value ofmimwG(T, δ) over all possible branch decompositions (T, δ) for G.
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Mim-width of interval graphs

Interval graph: intersection graph of a family of intervals on the real line.

Theorem (Belmonte, Vatshelle 2013)
mimw(G) ≤ 1, for any interval graph G. Moreover, a branch decomposition of
mim-width at most 1 can be computed in linear time.
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Whymim-width?
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bounded cw

bounded tw

boundedmimw

mimw(G) ≤ cw(G) (Vatshelle 2012)

Locally checkable vertex subset problems
(INDEPENDENT SET, DOMINATING SET, TOTAL
DOMINATING SET, ...) are in P for classes
with boundedmim-width, provided a
branch decomposition is given.
(Bui-Xuan et al. 2013)

• Bad News. Computing a branch decomposition with optimal mim-width is
NP-complete. Determining the optimal mim-width is unlikely to be in APX.
(Sæther and Vatshelle 2016)

• Good News. Can find branch decomposition of constant mim-width in polynomial
time for: interval graphs, permutation graphs, convex graphs, trapezoid graphs,
circular permutation graphs, circular arc graphs, leaf powers, ...
(Belmonte and Vatshelle 2013)
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LCVS problems
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Given finite or co-finite subsets σ, ρ ofN and a graph G, S ⊆ V(G) is a (σ, ρ)-set if:

• |N(v) ∩ S| ∈ σ, for each v ∈ S;

• |N(v) ∩ S| ∈ ρ, for each v ∈ V(G) \ S.

Locally checkable vertex subset problem: find a min or max (σ, ρ)-set in input graph
G (Telle and Proskurowski 1997).

Distance-r locally checkable vertex subset problem: replace N(v)with Nr(v) (Ja�ke et
al. 2020).

(Ja�ke et al. 2020)



LCVS problems andmim-width

Theorem (Bui-Xuan et al. 2013)
There is an algorithm that, given a graph G and a branch decomposition (T, δ) for
G with w = mimwG(T, δ), solves each LCVS problem in O(n4+3dw) time.

Theorem (Ja�ke et al. 2020)
There is an algorithm that for all r ∈ N, given a graph G and a branch
decomposition (T, δ) for G with w = mimwG(T, δ), solves each distance-r LCVS
problem in O(n4+6dw) time.

Solving distance-r LCVS on G is the same as solving distance-1 LCVS on Gr .
Moreover,mimw(Gr) ≤ 2mimw(G).

Theorem (Fomin et al. 2018)
INDEPENDENT SET and DOMINATING SET areW[1]-hard parameterized by
mimw(G) and solution size.
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Beyond LCVS problems

• LONGEST INDUCED PATH (Ja�ke et al. 2020)

• INDUCED DISJOINT PATHS (Ja�ke et al. 2020)

• FEEDBACK VERTEX SET (Ja�ke et al. 2020)

• SUBSET FEEDBACK VERTEX SET (Bergougnoux et al. 2020)

• NODE MULTIWAY CUT (Bergougnoux et al. 2020)

• Connected variants of LCVS problems (Bergougnoux and Kanté 2019)

• SEMITOTAL DOMINATING SET (Galby, M., Ries 2020)

15/30
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Domination parameters

γ(G) ≤ γt2(G) ≤ γt(G)
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• dominating set: S ⊆ V(G) such that each vertex in V(G) \ S has a neighbour in S.

For a graph with no isolated vertex:

• total dominating set: a dominating set S such that each vertex in S has a neighbour in S.

• semitotal dominating set: a dominating set S such that each vertex in S is within
distance two of another.
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From semitotal to total
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Theorem (Galby, M., Ries 2020)
There is an algorithm that, given a graph G and a branch decomposition (T, δ) for G with
w = mimwG(T, δ), solves SEMITOTAL DOMINATING SET in O(n4+6w) time.

Idea: Find a boundedmim-width preserving reduction from SEMITOTAL DOMINATING SET to
TOTAL DOMINATING SET.

• Let G be the input graph and (T, δ) the given branch decomposition with
w = mimwG(T, δ).
• Compute an appropriate G′ such that:

• γt2(G) = γt(G′) and amin semi-TD-set of G can be obtained from amin TD-set of G′ in
linear time.

• G′ has a branch decomposition (T′, δ′)withmimwG′ (T′, δ′) ≤ 2w.
• Both G′ and (T′, δ′) can be computed in O(n3) time.

• Find amin TD-set of G′ with given branch decomposition (T′, δ′) by (Bui-Xuan et al.
2013).
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From semitotal to total: γt2(G) = γt(G′)
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γt(G′) ≤ γt2(G): If S is a semi-TD-set of G, then S′ = {v2 ∈ V2 : v ∈ S} is a TD-set of G′.

γt2(G) ≤ γt(G′): Let S′ be amin TD-set of G′. Wlog, v1 and v2 are not both in S′.

• S = {v ∈ V : {v1, v2} ∩ S′ 6= ∅} is a semi-TD-set of G.
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From semitotal to total: γt2(G) = γt(G′)

19/30

=⇒

G = (V,E)

=⇒

G = (V,E)

=⇒

true twins

G = (V,E)

=⇒

true twins

G = (V,E)
G2

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

γt(G′) ≤ γt2(G): If S is a semi-TD-set of G, then S′ = {v2 ∈ V2 : v ∈ S} is a TD-set of G′.

γt2(G) ≤ γt(G′): Let S′ be amin TD-set of G′. Wlog, v1 and v2 are not both in S′.

• S = {v ∈ V : {v1, v2} ∩ S′ 6= ∅} is a semi-TD-set of G.



From semitotal to total: γt2(G) = γt(G′)

19/30

=⇒

G = (V,E)

=⇒

G = (V,E)

=⇒

true twins

G = (V,E)

=⇒

true twins

G = (V,E)
G2

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

γt(G′) ≤ γt2(G): If S is a semi-TD-set of G, then S′ = {v2 ∈ V2 : v ∈ S} is a TD-set of G′.

γt2(G) ≤ γt(G′): Let S′ be amin TD-set of G′. Wlog, v1 and v2 are not both in S′.

• S = {v ∈ V : {v1, v2} ∩ S′ 6= ∅} is a semi-TD-set of G.



From semitotal to total: γt2(G) = γt(G′)

19/30

=⇒

G = (V,E)

=⇒

G = (V,E)

=⇒

true twins

G = (V,E)

=⇒

true twins

G = (V,E)
G2

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

γt(G′) ≤ γt2(G): If S is a semi-TD-set of G, then S′ = {v2 ∈ V2 : v ∈ S} is a TD-set of G′.

γt2(G) ≤ γt(G′): Let S′ be amin TD-set of G′. Wlog, v1 and v2 are not both in S′.

• S = {v ∈ V : {v1, v2} ∩ S′ 6= ∅} is a semi-TD-set of G.



From semitotal to total: γt2(G) = γt(G′)

19/30

=⇒

G = (V,E)

=⇒

G = (V,E)

=⇒

true twins

G = (V,E)

=⇒

true twins

G = (V,E)
G2

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

=⇒

true twins

G = (V,E)
G2

V1

V2

G′ = (V ′, E ′)

γt(G′) ≤ γt2(G): If S is a semi-TD-set of G, then S′ = {v2 ∈ V2 : v ∈ S} is a TD-set of G′.

γt2(G) ≤ γt(G′): Let S′ be amin TD-set of G′. Wlog, v1 and v2 are not both in S′.

• S = {v ∈ V : {v1, v2} ∩ S′ 6= ∅} is a semi-TD-set of G.



From semitotal to total: if G has boundedmim-width, then G′ has

Lemma (Galby, M., Ries 2020)

For any graph G not isomorphic to tK1,mimw(G′) ≤ 2 ·mimw(G).
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A broader view
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Behavior wrt graph operations

Lemma (Vatshelle 2012, BHMPP 2020+)

• Vertex deletion:mimw(G)− 1 ≤ mimw(G− v) ≤ mimw(G).

• 1-subdivision of e ∈ E(G):mimw(G) ≤ mimw(G′) ≤ mimw(G) + 1.

• Clique implant on v ∈ V(G):mimw(G) ≤ mimw(G′) ≤ mimw(G) + d(v).

• k-partite partial complementation:mimw(G′) ≥ 1
k(k−1) ·mimw(G).

• Blocks:mimw(G) = max{mimw(H) : H is a block of G}. Moreover, given
branch decompositions of each block of G with mim-width at most k, we can
compute a branch decomposition for G with mim-width at most k in poly time.

=⇒ =⇒
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Theorem (BHMPP 2020+)
Let W be an elementary (n× n)-wall with n ≥ 7.
Thenmimw(W) ≥

√
n

30 .

≥ n(W )
3 ≥ n(W )

3

If G[A, A] is d-degenerate and has matching of sizem, then G[A, A] has inducedmatching of
sizem/(d + 1) (Vatshelle 2012)
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3 comp.

H: subgraph ofW[Ae, Ae] induced by bold edges

 Each component of H has size ni ≥ 2 and a
matching of size≥ (ni − 1)/3 ≥ ni/6 (Biedl et al. 2004)

 H has a matching of size
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The following graph classes have unboundedmim-width:

• Co-bipartite (Mengel 2018)

• Split (Mengel 2018)

• Strongly chordal (Mengel 2018)

• Chordal bipartite (Brault-Baron et al. 2015)

• Circle (Kang et al. 2017)

• Co-comparability (Kang et al. 2017)

Theorem (BHMPP 2020+)
The class of H-free graphs has boundedmim-width if and only if H ⊆i P4.

• If H ⊆i P4, then H-free graphs are P4-free and so have clique-width at most 2
and hence mim-width at most 2.

• Suppose H is such that the class of H-free graphs has boundedmim-width.
 H is a (3P1, 2P2)-free forest.
 H ⊆i P4.
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(H1,H2)-free graphs: New bounded cases

27/30

• Let r ≥ 3. For any (Kr � rP1, 2P2)-free graph G and any X ⊆ V(G),
cutmimG(X, X) < max{6, r}.

• Let r ≥ 1 and t ≥ 1. For any (Kr � P1, tP2)-free graph G and any X ⊆ V(G),
cutmimG(X, X) < R(r, R(r, t)).

• Let r ≥ 1 and s ≥ 0. For any (Kr � Kr, sP1 + P2)-free graph G and any X ⊆ V(G),
cutmimG(X, X) < R(R(r, s+ 1), s+ 1).

• If G is (2P2, K1,3)-free, thenmimw(G) < 6 and we can construct in polynomial time a
branch decomposition (T, δ) for GwithmimwG(T, δ) < 6.

• If G is (2P1 + P2, bowtie)-free, thenmimw(G) < R(14, 3) and we can construct in
polynomial time a branch decomposition (T, δ) for GwithmimwG(T, δ) < R(14, 3).

Complementation does not preservemim-width: (4P1, 2P2)-free graphs have bounded
mim-width but (K4, C4)-free graphs have unboundedmim-width.



Partial picture

Theorem (BHMPP 2020+)
Dichotomy when H1 and H2 are such that |V(H1)|+ |V(H2)| ≤ 8.

Theorem (BHMPP 2020+)
Let H1 and H2 be forests. Dichotomy except for:

1. H1 = 2P2 and H2 = K1,3 + sP1 for s ≥ 1;

2. H1 = 2P2 and H2 = S1,1,2 + sP1 for s ≥ 0.

Theorem (BHMPP 2020+)
Let H1 and H2 be connected graphs. Dichotomy except for:

1. H1 = P5 and H2 = S1,1,2 or K1,r + sP1 for r ≥ 3 and s ∈ {1, 2};

2. H1 = P7 or Sh,i,j for h ≤ i ≤ j ≤ 4with i+ j ≤ 6 ≤ h+ i+ j and H2 = C3 or paw;

3. H1 = K1,3 or S1,1,2 and H2 = hammer.

28/30



More open problems

• Characterize graphs of mim-width at most 1.
• Further extendmim-width sim-width. Any problem poly-time solvable on
bounded sim-width graphs?
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Thank you!
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