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Nonlinear 0-1 optimization

Definitions

Pseudo-Boolean functions
A pseudo-Boolean function is a mapping f : {0,1}n → R, that is, a
real-valued function of 0− 1 variables.

Multilinear polynomials
Every pseudo-Boolean function can be represented – in a unique way
– as a multilinear polynomial in its variables. (Note: x2

k = xk .)

Example:
f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3x4 − 13x1x2x3x4
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Nonlinear 0-1 optimization

Multilinear optimization in binary variables

(MOB) min
x∈{0,1}n

f (x) =
∑

S∈2[n]

aS

∏
k∈S

xk

Complexity
Given a multilinear polynomial f of degree at least 2, it is NP-hard to
find the minimum of f .

The quadratic case has attracted much attention:

many examples arise in this form: MAX CUT, MAX 2SAT, simple
computer vision models,...
efficient exact algorithms and heuristics have been proposed for
this case
higher-degree cases can be efficiently reduced to the quadratic
case, and this leads to good optimization algorithms.
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Quadratization

Quadratization

Observations
Say g(x , y), (x , y) ∈ {0,1}n+m, is a quadratic function.

Then, for all x ∈ {0,1}n,

f (x) := min{g(x , y) | y ∈ {0,1}m}

is a pseudo-Boolean function.
f (x) may be quadratic, or not.
min{f (x) | x ∈ {0,1}n} = min{g(x , y) | (x , y) ∈ {0,1}n+m}.
Conversely...
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Quadratization

Quadratization

Quadratization
The quadratic function g(x , y), (x , y) ∈ {0,1}n+m is an
m-quadratization of the pseudo-Boolean function f (x), x ∈ {0,1}n, if

f (x) = min{g(x , y) | y ∈ {0,1}m} for all x ∈ {0,1}n.

The y -variables are called auxiliary variables.

min{f (x) | x ∈ {0,1}n} = min{g(x , y) | (x , y) ∈ {0,1}n+m}.
Akin to linearization procedures for MOB.
Does every function f have a quadratization?
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Quadratization

Existence

Existence of quadratizations (Rosenberg 1975)

Given the multilinear expression of a pseudo-Boolean function
f (x), x ∈ {0,1}n, one can find in polynomial time a quadratization
g(x , y) of f (x).

Idea: in each term
∏

i∈A xi of f , with {1,2} ⊆ A, replace the
product x1x2 by y :

t(x , y) =

(∏
i∈A\{1,2} xi

)
y + M(x1x2 − 2x1y − 2x2y + 3y).
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Quadratization

Example

Example:
minx f = 4− 9x1− 5x2− 2x3 + 13x1x2 + 13x1x3 + 6x2x3x4− 13x1x2x3x4

Substitute x3x4:
minx ,y 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2y34 − 13x1x2y34 +
M (x3x4 − 2x3y34 − 2x4y34 + 3y34)

In a minimizer (x , y),
if x3 = x4 = 1, then M (1− y34) = 0 and y34 = x3x4 = 1;
if x3 = 0, then M (−2x4y34 + 3y34) = 0 and y34 = x3x4 = 0.
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Quadratization

Existence

Existence of quadratizations (Rosenberg 1975)

Given the multilinear expression of a pseudo-Boolean function
f (x), x ∈ {0,1}n, one can find in polynomial time a quadratization
g(x , y) of f (x).

Idea: in each term
∏

i∈A xi of f , with {1,2} ⊆ A, replace the
product x1x2 by y :

t(x , y) =

(∏
i∈A\{1,2} xi

)
y + M(x1x2 − 2x1y − 2x2y + 3y).

Fix x . In every minimizer of t(x , y), y = x1x2 and t(x , y) =
∏

i∈A xi .
Potential drawbacks: introduces many auxiliary variables, big M.
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Quadratization

Questions arising...

Many quadratization procedures proposed in recent years. Which
ones are “best”? Small number of variables, of positive terms,
good properties with respect to persistencies, submodularity?
Easier question: What if f is a single monomial?
Can we chararacterize all quadratizations of f?
How many variables are needed in a quadratization?
etc.

Refs: Boros and Gruber (2011); Buchheim and Rinaldi (2007); Fix,
Gruber, Boros and Zabih (2011): Freedman and Drineas (2005);
Ishikawa (2011); Kolmogorov and Zabih (2004); Ramalingam et al.
(2011); Rosenberg (1975); Rother et al. (2009); Živný, Cohen and
Jeavons (2009); etc.
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Quadratization

Outline

Focus of the presentation:

lower and upper bounds on size of quadratizations
the case of symmetric functions

M. Anthony, E. Boros, Y. Crama and M. Gruber, Quadratization of
symmetric pseudo-Boolean functions, Discrete Applied Mathematics
203 (2016) 1–12.

M. Anthony, E. Boros, Y. Crama and M. Gruber, Quadratic
reformulations of nonlinear binary optimization problems Mathematical
Programming 162 (2017) 115-144.

E. Boros, Y. Crama and E. Rodrìguez-Heck, Compact quadratizations
for pseudo-Boolean functions, Working paper, 2018.
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Symmetric functions

General question

How many auxiliary variables are needed in general?

Worst-case bound based on termwise quadratizations:

Observation

Every term of the form a
∏n

i=1 xi can be quadratized using n − 2
auxiliary variables (Rosenberg 1975), and even

⌊n−1
2

⌋
auxiliary

variables (Ishikawa 2011).

So:

Ishikawa (2011)

Every n-variable pBF has a quadratization involving
⌊n−1

2

⌋
2n auxiliary

variables.

Best known bound, until recently.
Digression...
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Symmetric functions

The case of symmetric functions

Symmetric functions

A pseudo-Boolean function f is symmetric if the value of f (x) depends
only on the Hamming weight |x | =

∑n
j=1 xj (number of ones) of x .

That is, there is a discrete function k : {0,1, . . . ,n} → R such that
f (x) = k(w) where w = |x |.

Examples:
Monomials: a

∏n
i=1 xi = a x1 . . . xn.

At least k -out-of-n function: takes value 1 if and only if |x | ≥ k .
Parity function: takes value 1 if and only if |x | is even.
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Symmetric functions

Upper bounds for symmetric functions

How many auxiliary variables are needed to quadratize a
symmetric function?

Negative monomial: Nn(x) = −
∏n

i=1 xi = −x1 . . . xn.

(Freedman and Drineas 2005) Nn(x) = miny (n − 1−
∑n

i=1 xi)y .
Positive monomial: Pn(x) =

∏n
i=1 xi = x1 . . . xn.

(Ishikawa 2011) Pn can be quadratized using
⌊n−1

2

⌋
auxiliary

variables.
(Fix 2011) n − 1 variables suffice for any symmetric function.

Based on ad hoc arguments.
In DAM (2016), we proposed a generic approach based on a
general representation theorem for discrete functions.
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Symmetric functions

Recent improvements: Boros, Crama, Rodrìguez-Heck (2018).

Assume: k ≥ n
2 .

Function Lower Bound Upper Bound Previous UB
Symmetric Ω(

√
n) 2d

√
n + 1e n − 2

Positive monomial dlog(n)e − 1 dlog(n)e − 1
⌊n−1

2

⌋
k -out-of-n dlog(k)e − 1 dlog(k)e

⌈n
2

⌉
Parity dlog(n)e − 1 dlog(n)e − 1

⌊n−1
2

⌋
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Symmetric functions

Basic idea:

Positive monomial: upper bound

Assume that n = 2k . Then,

g(x , y) = (
n∑

i=1

xi −
k−1∑
j=0

2jyj)
2

is a quadratization of the positive monomial Pn(x) =
∏n

i=1 xi using
k = log(n) auxiliary variables.

Proof. (Sketch.) For all (x , y), g(x , y) ≥ 0 and 0 ≤
∑k−1

j=0 2jyj ≤ n − 1.
If
∑n

i=1 xi < n, then one can make g(x , y) = 0.
If
∑n

i=1 xi = n, then miny g(x , y) = 1.
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Symmetric functions

Refinement:

Positive monomial: improved upper bound

Assume that n = 2k . Then,

g(x , y) =
1
2

(
n∑

i=1

xi −
k−1∑
j=1

2jyj)(
n∑

i=1

xi −
k−1∑
j=1

2jyj − 1)

is a quadratization of the positive monomial Pn(x) =
∏n

i=1 xi using
k − 1 = log(n)− 1 auxiliary variables.

We also have a matching lower bound.
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Symmetric functions

Positive monomial: lower bound

Every quadratization of the positive monomial Pn(x) =
∏n

i=1 xi must
use at least log(n)− 1 auxiliary variables.

Proof. (Sketch.) For a quadratization g(x , y), define
r(x) =

∏
y∈{0,1}m g(x , y).

The degree of r(x), deg(r), is at most 2m+1, by definition.
For every x with |x | < n, there is y ∈ {0,1}m such that
g(x , y) = 0. So, r(x) = 0.
When |x | = n, g(x , y) ≥ 1 for all y ∈ {0,1}m, and hence r(x) ≥ 1.
It follows that deg(r) = n
We get: deg(r) = n ≤ 2m+1.
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Symmetric functions

Similar ideas and bounds extend to k -out-of-n (“exact” or “at
least”) and to parity functions.

For symmetric functions:

General symmetric functions: Lower bound
Some symmetric functions have no m-quadratization using less
than

√
n auxiliary variables. (Anthony, Boros, Crama, Gruber

2017).
Every symmetric function has a quadratization using at most
2d
√

n + 1e auxiliary variables. (Boros, Crama, Rodrìguez-Heck
2018.)

Note: Proofs rely on techniques developed for the analysis of the
size of threshold circuits, and of slicing or covering of the vertices
of the hypercube by hyperplanes (work by Alon, Füredi, Linial,
Radhakrishnan, Saks, etc.)
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Upper bounds

Upper bound

Worst-case bound based on termwise quadratizations:

Corollary
Every function f of n variables has a quadratization involving at most
O(log(n) 2n) auxiliary variables.

We can prove:

Theorem: upper bound (Math. Prog. (2017))

Every function f of n variables has a quadratization involving at most
O(2n/2) auxiliary variables.
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Upper bounds

Pairwise cover

Based on a construction using small pairwise covers:

Pairwise cover
A hypergraph H is a pairwise cover of {1, . . . ,n} if, for every
S ⊆ {1, . . . ,n} with |S| ≥ 3, there are sets A,B ∈ H such that
|A| < |S|, |B| < |S| and A ∪ B = S.

Pairwise covers are (almost) identical to so-called 2-bases
investigated by Erdös, Füredi and Katona (2006), Frein, Lévêque
and Sebö (2008), Ellis and Sudakov (2011).

P(even) = all subsets of even integers in {1, . . . ,n}.
P(odd) = all subsets of odd integers in {1, . . . ,n}.
H = P(even) ∪ P(odd) is a “small” pairwise cover with size
O(2n/2).
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Upper bounds

Pairwise covers and universal sets

We prove:

Theorem: From pairwise cover to quadratization

If there exists a pairwise cover of {1, . . . ,n} of size m, then every
pseudo-Boolean function has an m-quadratization.

Idea of the proof: write
∏

i∈S xi = (
∏

j∈A xj)(
∏

k∈B xk ); substitute yA
for
∏

j∈A xj and yB for
∏

k∈B xk .

There are pairwise covers with size O(2n/2).
Hence, every pseudo-Boolean function has a quadratization with
O(2n/2) auxiliary variables.
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Upper bounds

By-products and corollaries

Similarly:

Fixed-degree functions

For every fixed d , every pseudo-Boolean function of degree d has a
quadratizations with O(nd/2) auxiliary variables.
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Lower bounds

Lower bound

Any good lower bound on the number of auxiliary variables?

Theorem: lower bound (Math. Prog. (2017))

There are pseudo-Boolean functions of n variables for which every
quadratization must involve at least Ω(2n/2) auxiliary variables.

This lower bound matches the O(2n/2) upper bound.
Non constructive proof based on dimensionality argument: if too
few auxiliary variables, then we cannot generate the whole vector
space of pseudo-Boolean functions.
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Lower bounds

Proof

Main idea: dimensionality argument.

Suppose f (x) has an m-quadratization g(x , y): for all x ∈ {0,1}n,

f (x) = min{g(x , y) : y ∈ {0,1}m}. (1)

g(x , y) has O(n2 + m2) coefficients.
But the vector space of pseudo-Boolean functions on n variables
has dimension 2n.
So, if m is too small, we cannot generate the whole vector space.
It follows that if m additional variables suffice to quadratize any
pseudo-Boolean function in n variables, then m is Ω(2n/2).

Must be refined, since the relation (1) is not linear.
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Lower bounds

By-products and corollaries

Almost all functions...

Almost all pBFs need at least Ω(2n/2) auxiliary variables to be
quadratized.

But no good lower bound for any specific function...
We have seen earlier that pBFs of degree d can be quadratized
using O(nd/2) auxiliary variables.

Fixed-degree functions

For every fixed d , there are degree-d pseudo-Boolean functions of n
variables for which any quadratization must involve at least Ω(nd/2)
auxiliary variables.
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Lower bounds

Comments and interpretation

All quadratization procedures considered here can be
implemented in time polynomial in n and t , where t is the number
of terms of the function.

All termwise procedures require Ω(log(n) t) auxiliary variables
(compare with t auxiliary variables for linearization).
Since almost all functions contain Ω(2n) terms, termwise
quadratization usually requires Ω(log(n) 2n) auxiliary variables.
Our results improve this from Ω(log(n) 2n) to Ω(2n/2) auxiliary
variables (or from Ω(log(n) nd ) to Ω(nd/2) for degree-d functions).
Our quadratization procedure based on pairwise covers probably
yields small quadratizations as a function of t as well, but we have
no generic bounds in this case.
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Conclusions

Conclusions

Tight lower and upper bound for special classes of functions (e.g.,
for positive monomials).
Tight lower and upper bounds on the number of auxiliary variables
required for arbitrary and for fixed-degree functions.
Structure and properties of quadratizations are poorly understood.
Computational tests show that pairwise covers yield good
quadratizations and efficient approaches for certain classes of
nonlinear problems, but linearization remains competitive in most
cases.
Many intriguing questions and conjectures, much computational
and theoretical work to be done.
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