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All graphs are assumed to be finite and simple.

Definition
An induced subgraph of a graph G is any graph H s.t.
V (H) ⊆ V (G) and for all distinct u, v ∈ V (H), uv ∈ E (H) iff
uv ∈ E (G).

an induced subgraph not an induced subgraph
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G GG
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Definition
A cutset of a graph G is a (possibly empty) set C $ V (G) s.t.
G \ C is disconnected.

Definition
A cut-partition of a graph G is a partition (A,B,C) of V (G) s.t. A
and B are non-empty (C may possibly be empty), and A is
anticomplete to B (i.e. there are no edges between A and B).

A 6= ∅ B 6= ∅C

G

Definition
Let k ∈ N+. A graph is k-connected if it has ≥ k + 1 vertices and
does not admit a cutset of size ≤ k − 1.
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Theorem [Mader, 1972]
Let k ∈ N+, and let G be a graph. If d(G) ≥ 4k,a then G contains
a (k + 1)-connected induced subgraph.

ad(G) = average degree of G

Theorem 1 [P., Thomassé, Trotignon, 2016]
Let k ∈ N+, and let G be a graph. If δ(G) > 2k2 − 1,a then G
contains a (k + 1)-connected induced subgraph H s.t.
∂G(H) $ V (H)b and |∂G(H)| ≤ 2k2 − 1.

aδ(G) = minimum degree of G
b∂G(H) = frontier of H, i.e. vertices of H with a neighbor in V (G) \ V (H).

V (G) \ V (H)∂G(H)V (H) \ ∂G(H) 6= ∅

H - (k + 1)-connected |∂G(H)| ≤ 2k2 − 1
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b∂G(H) = frontier of H, i.e. vertices of H with a neighbor in V (G) \ V (H).

Question: Is it possible to replace δ(G) with d(G) in
Theorem 1 (possibly by increasing the bound of 2k2 − 1)?

Answer: No. (Not even for k = 1.)

Proposition
∀d ∈ N+, there is a graph of average degree ≥ d , all of whose
2-connected induced subgraphs have frontier of size ≥ d .
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Theorem [Sachs, 1963]
For all integers d , g ≥ 3, there exists a d-regular graph of girth g .

Proposition
∀d ∈ N+, there is a graph of average degree ≥ d , all of whose
2-connected induced subgraphs have frontier of size ≥ d .

Proof: Let d ≥ 3, and let G0 be a (2d − 2)-regular graph with
girth(G0) = d .

Let G be obtained from G0 by adding a pendant
edge at each vertex. Then d(G) = girth(G) = d .

Let H be a 2-connected induced subgraph of G . Then H is an
induced subgraph of G0; because of the pendant edges,
∂G(H) = V (H). Furthermore, H contains a cycle, and so
|V (H)| ≥ girth(G) = d , and consequently, |∂G(H)| ≥ d . Q.E.D.



Theorem [Sachs, 1963]
For all integers d , g ≥ 3, there exists a d-regular graph of girth g .

Proposition
∀d ∈ N+, there is a graph of average degree ≥ d , all of whose
2-connected induced subgraphs have frontier of size ≥ d .

Proof: Let d ≥ 3, and let G0 be a (2d − 2)-regular graph with
girth(G0) = d . Let G be obtained from G0 by adding a pendant
edge at each vertex. Then d(G) = girth(G) = d .

GG0

For d = 3:

Let H be a 2-connected induced subgraph of G . Then H is an
induced subgraph of G0; because of the pendant edges,
∂G(H) = V (H). Furthermore, H contains a cycle, and so
|V (H)| ≥ girth(G) = d , and consequently, |∂G(H)| ≥ d . Q.E.D.



Theorem [Sachs, 1963]
For all integers d , g ≥ 3, there exists a d-regular graph of girth g .

Proposition
∀d ∈ N+, there is a graph of average degree ≥ d , all of whose
2-connected induced subgraphs have frontier of size ≥ d .

Proof: Let d ≥ 3, and let G0 be a (2d − 2)-regular graph with
girth(G0) = d . Let G be obtained from G0 by adding a pendant
edge at each vertex. Then d(G) = girth(G) = d .

GG0

For d = 3:
HH

Let H be a 2-connected induced subgraph of G . Then H is an
induced subgraph of G0; because of the pendant edges,
∂G(H) = V (H). Furthermore, H contains a cycle, and so
|V (H)| ≥ girth(G) = d , and consequently, |∂G(H)| ≥ d . Q.E.D.



Theorem 1 [P., Thomassé, Trotignon, 2016]
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aδ(G) = minimum degree of G
b∂G(H) = frontier of H, i.e. vertices of H with a neighbor in V (G) \ V (H).

Question: Is it possible to obtain a linear (or at least
subquadratic) bound for δ(G)?

Answer: No.

Proposition
Let k ∈ N+. There exists a graph G with δ(G) = k2 + k − 1 s.t.
all (k + 1)-connected induced subgraphs H of G satisfy
∂G(H) = V (H).
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Let k ∈ N+, and let G be a graph. If δ(G) > 2k2 − 1,a then G
contains a (k + 1)-connected induced subgraph H s.t.
∂G(H) $ V (H)b and |∂G(H)| ≤ 2k2 − 1.

aδ(G) = minimum degree of G
b∂G(H) = frontier of H, i.e. vertices of H with a neighbor in V (G) \ V (H).

Question: Is it possible to obtain a linear (or at least
subquadratic) bound for δ(G)?
Answer: No.

Proposition
Let k ∈ N+. There exists a graph G with δ(G) = k2 + k − 1 s.t.
all (k + 1)-connected induced subgraphs H of G satisfy
∂G(H) = V (H).



Proposition
Let k ∈ N+. There exists a graph G with δ(G) = k2 + k − 1
δ(G) = k2 s.t. all (k + 1)-connected induced subgraphs H of G
satisfy ∂G(H) = V (H).
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Proof:

G is k2-regular.

=⇒ ∂G(H) = V (H)

=⇒ u1, . . . , uk /∈ V (H)

Then H lies entirely
inside one copy of G0,
and δ(H) ≥ k + 1.

Let H be a
(k + 1)-connected
induced subgraph of G.

=⇒ δ(G) = k2
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Theorem 1’ [P., Thomassé, Trotignon, 2016]
Let k ∈ N+, and let G be a graph. Then at least one of the
following holds:
(a) G is (k + 1)-connected;
(b) G admits a cut-partition (A,B,C) s.t. G [A ∪ C ] is

(k + 1)-connected and |C | ≤ 2k2 − 1;
(c) G contains a vertex of degree at most 2k2 − 1.

A 6= ∅ B 6= ∅C

GG[A ∪ C] is
(k + 1)-connected

|C| ≤ 2k2 − 1
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H := G[A ∪ C] is
(k + 1)-connected

|C| ≤ 2k2 − 1

Theorem 1’ ⇒ Theorem 1:

∂G(H) ⊆ C

If (a) holds:

H := G

If (b) holds:

∂G(H) = ∅
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=⇒ δG(H) > 2k2 − 1
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Theorem [Alon, Kleitman, Saks, Seymour, Thomassen, 1987]
Let k, c ∈ N+. Then every graph of chromatic number greater
than max{c + 10k2 + 1, 100k3} has a (k + 1)-connected induced
subgraph of chromatic number greater than c.

Theorem [Chudnovsky, P., Scott, Trotignon, 2013]
Let k, c ∈ N+. Then every graph of chromatic number greater
than max{c + 2k2, 2k2 + k} has a (k + 1)-connected induced
subgraph of chromatic number greater than c.

Corollary [P., Thomassé, Trotignon, 2016]
Let k, c ∈ N+. Then every graph of chromatic number greater
than c + 2k2 − 1 has a (k + 1)-connected induced subgraph of
chromatic number greater than c.
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Corollary [P., Thomassé, Trotignon, 2016]
Let k, c ∈ N+. Then every graph of chromatic number greater
than c + 2k2 − 1 has a (k + 1)-connected induced subgraph of
chromatic number greater than c.

Proof (using Theorem 1’):

Let G be s.t. χ(G) > c + 2k2 − 1. We
must exhibit a (k + 1)-connected induced subgraph H of G s.t.
χ(H) > c.

We may assume that χ(G) = c + 2k2, and that G is vertex-critical
(i.e. all proper induced subgraphs have chromatic number
≤ χ(G)− 1).
=⇒ δ(G) ≥ χ(G)− 1 = c + 2k2 − 1 ≥ 2k2.
=⇒ (c) from Theorem 1’ is false.

We may assume that G is not (k + 1)-connected (otherwise, we set
H := G , and we are done). Thus, (a) from Theorem 1’ is false.
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Proof (cont.): Thus, (b) from Theorem 1’ holds. Let (A,B,C) be
as in (b) from Theorem 1’, and set H := G [A ∪ C ]. Then H is
(k + 1)-connected; we must show that χ(H) > c.

Suppose otherwise, i.e. χ(H) ≤ c.
=⇒ χ(G [A]) ≤ χ(H) ≤ c.

Since G is vertex-critical, χ( G \ A︸ ︷︷ ︸
=G[B∪C ]

) ≤ χ(G)− 1 = c + 2k2 − 1.

A 6= ∅ B 6= ∅C

H = G[A ∪ C] is (k + 1)-connected.

|C| ≤ 2k2 − 1
H

χ(G) = c + 2k2
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H = G[A ∪ C] is (k + 1)-connected.

|C| ≤ 2k2 − 1
H

χ(G[A]) ≤ c

χ(G[B ∪ C]) ≤ c + 2k2 − 1

χ(G) = c + 2k2

We properly color G \ A = G [B ∪ C ] with c + 2k2 − 1 colors.

At most |C | ≤ 2k2− 1 of those colors are used on C ; consequently,
at least c of our c + 2k2 − 1 colors remain “unused” on C .

Use these c “unused” colors to properly color G [A].

We now have a proper coloring of G that uses only c + 2k2 − 1
colors, contrary to the fact that χ(G) = c + 2k2. Q.E.D.
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colors, contrary to the fact that χ(G) = c + 2k2. Q.E.D.



Corollary [P., Thomassé, Trotignon, 2016]
Let k, c ∈ N+. Then every graph of chromatic number greater
than c + 2k2 − 1 has a (k + 1)-connected induced subgraph of
chromatic number greater than c.

Theorem 2 [P., Thomassé, Trotignon, 2016]
Let k, c ∈ N+. Then every graph of chromatic number greater
than max{c + 2k − 2, 2k2} has a (k + 1)-connected induced
subgraph of chromatic number greater than c.

Theorem 2 does not follow from Theorem 1’ (equivalently:
Theorem 1). It can, however, be derived form a lemma
(Lemma 1) that we used to prove Theorem 1’.
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Let k, c ∈ N+. Then every graph of chromatic number greater
than max{c + 2k − 2, 2k2} has a (k + 1)-connected induced
subgraph of chromatic number greater than c.

Theorem 2 does not follow from Theorem 1’ (equivalently:
Theorem 1). It can, however, be derived form a lemma
(Lemma 1) that we used to prove Theorem 1’.



Corollary [P., Thomassé, Trotignon, 2016]
Let k, c ∈ N+. Then every graph of chromatic number greater
than c + 2k2 − 1 has a (k + 1)-connected induced subgraph of
chromatic number greater than c.

Theorem 2 [P., Thomassé, Trotignon, 2016]
Let k, c ∈ N+. Then every graph of chromatic number greater
than max{c + 2k − 2, 2k2} has a (k + 1)-connected induced
subgraph of chromatic number greater than c.

Theorem 2 does not follow from Theorem 1’ (equivalently:
Theorem 1). It can, however, be derived form a lemma
(Lemma 1) that we used to prove Theorem 1’.



Definition
Let k ∈ N+, and let G be a graph.

1 for all v ∈ V (G) and Z ⊆ V (G) \ {v},a

wZ (v) =



1 if dZ (v) = 0

dZ (v) if 1 ≤ dZ (v) ≤ k

k if dZ (v) ≥ k + 1

2 for all disjoint sets Y ,Z ⊆ V (G), wZ (Y ) =
∑

v∈Y
wZ (v).b

adZ (v) = number of neighbors that v has in Z
b=⇒ |Y | ≤ wZ (Y ) ≤ k|Y |

v Z
G

dZ(v) = |NG(v) ∩ Z|



Lemma 1 [P., Thomassé, Trotignon, 2016]
Let k ∈ N+, and let G be a graph. Then at least one of the
following holds:
(a) G is (k + 1)-connected;
(b) G admits a cut-partition (A,B,C) s.t. G [A ∪ C ] is

(k + 1)-connected and wB(C) ≤ 2k2 − 1;a

(c) G contains a vertex of degree at most 2k2 − 1.
aConsequently, |C | ≤ wB(C) ≤ 2k2 − 1.

A 6= ∅ B 6= ∅C

G

wB(C) ≤ 2k2 − 1

G[A ∪ C] is (k + 1)-connected

Clearly, Lemma 1 implies Theorem 1’.
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Lemma 1 [P., Thomassé, Trotignon, 2016]
Let k ∈ N+, and let G be a graph. Then at least one of the
following holds:
(a) G is (k + 1)-connected;
(b) G admits a cut-partition (A,B,C) s.t. G [A ∪ C ] is

(k + 1)-connected and wB(C) ≤ 2k2 − 1;a

(c) G contains a vertex of degree at most 2k2 − 1.
aConsequently, |C | ≤ wB(C) ≤ 2k2 − 1.

Proof: We assume that (a) and (c) are false (i.e. G is not
(k + 1)-connected, and δ(G) ≥ 2k2), and we prove (b).



Claim 1: G admits a cut-partition (A,B,C) s.t.
wB(C) ≤ 2k2 − 1.

Proof of Claim 1: Since G is not (k + 1)-connected, either
(1) |V (G)| ≤ k + 1, or
(2) G admits a cutset of size ≤ k.
However,

|V (G)| ≥ δ(G) + 1 ≥ 2k2 + 1 ≥ k + 2.

and so (1) is false. Thus, (2) is true.

Let (A,B,C) be a cut-partition of G s.t. |C | ≤ k.

A 6= ∅ B 6= ∅C

G

|C| ≤ k

Then wB(C) ≤ k|C | ≤ k2 ≤ 2k2 − 1. This proves Claim 1.
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(1) |V (G)| ≤ k + 1, or
(2) G admits a cutset of size ≤ k.
However,

|V (G)| ≥ δ(G) + 1 ≥ 2k2 + 1 ≥ k + 2.

and so (1) is false. Thus, (2) is true.

Let (A,B,C) be a cut-partition of G s.t. |C | ≤ k.

A 6= ∅ B 6= ∅C

G

|C| ≤ k

Then wB(C) ≤ k|C | ≤ k2 ≤ 2k2 − 1. This proves Claim 1.



Proof (cont.): Let (A,B,C) be a cut-partition of G with
wB(C) ≤ 2k2 − 1, and subject to that, chosen so that A ∪ C is
minimal.4

A 6= ∅ B 6= ∅C

G

wB(C) ≤ 2k2 − 1

We must show that G [A ∪ C ] is (k + 1)-connected, that is, that
|A ∪ C | ≥ k + 2, and
G [A ∪ C ] does not admit a cutset of size ≤ k.

This will imply that (A,B,C) satisfies (b).

4Thus, there does not exist a cut-partition (A′,B′,C ′) of G s.t.
wB′ (C ′) ≤ 2k2 − 1 and A′ ∪ C ′ $ A ∪ C .



Proof (cont.): Let (A,B,C) be a cut-partition of G with
wB(C) ≤ 2k2 − 1, and subject to that, chosen so that A ∪ C is
minimal.4

A 6= ∅ B 6= ∅C

G
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We must show that G [A ∪ C ] is (k + 1)-connected, that is, that
|A ∪ C | ≥ k + 2, and
G [A ∪ C ] does not admit a cutset of size ≤ k.

This will imply that (A,B,C) satisfies (b).

4Thus, there does not exist a cut-partition (A′,B′,C ′) of G s.t.
wB′ (C ′) ≤ 2k2 − 1 and A′ ∪ C ′ $ A ∪ C .



Proof (cont.):
Claim 2: |A ∪ C | ≥ k + 2.

Proof of Claim 2: Suppose otherwise, i.e. |A ∪ C | ≤ k + 1.

A 6= ∅ B 6= ∅C

Ga

Fix a ∈ A. Then

degG(a) ≤ |A ∪ C | − 1 ≤ k < 2k2 ≤ δ(G),

a contradiction. This proves Claim 2.

It remains to show that G [A ∪ C ] does not admit a cutset of
size ≤ k.
Suppose otherwise, i.e. G [A ∪ C ] admits a cutset of size ≤ k.
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Proof (cont.):
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Proof of Claim 2: Suppose otherwise, i.e. |A ∪ C | ≤ k + 1.

A 6= ∅ B 6= ∅C
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Fix a ∈ A. Then

degG(a) ≤ |A ∪ C | − 1 ≤ k < 2k2 ≤ δ(G),

a contradiction. This proves Claim 2.

It remains to show that G [A ∪ C ] does not admit a cutset of
size ≤ k.
Suppose otherwise, i.e. G [A ∪ C ] admits a cutset of size ≤ k.



Proof (cont.): Let (SA, SB,S) be a cut-partition of G [A ∪ C ] with
|S| ≤ k.

A ∩ SA C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

B

SA 6= ∅

S

SB 6= ∅

|S| ≤ k

wB(C) ≤
2k2 − 1

Goal: Derive a contradiction by either
exhibiting a vertex v ∈ V (G) s.t. degG(v) ≤ 2k2 − 1
(contrary to the fact that δ(G) ≥ 2k2), or
exhibiting a cut-partition (A′,B′,C ′) of G s.t.
wB′(C ′) ≤ 2k2 − 1 and A′ ∪ C ′ $ A ∪ C (contrary to the
minimality of A ∪ C).



Proof (cont.): Let (SA, SB,S) be a cut-partition of G [A ∪ C ] with
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B
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S
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Goal: Derive a contradiction by either
exhibiting a vertex v ∈ V (G) s.t. degG(v) ≤ 2k2 − 1
(contrary to the fact that δ(G) ≥ 2k2), or
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wB′(C ′) ≤ 2k2 − 1 and A′ ∪ C ′ $ A ∪ C (contrary to the
minimality of A ∪ C).



A ∩ SA C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

B

SA 6= ∅

S

SB 6= ∅

|S| ≤ k

wB(C) ≤
2k2 − 1

Clearly, wB(C ∩ SA) + wB(C ∩ SB) ≤ wB(C) ≤ 2k2 − 1.

=⇒ Either wB(C ∩ SA) ≤ k2 − 1 or wB(C ∩ SB) ≤ k2 − 1.
By symmetry, we may assume that wB(C ∩ SA) ≤ k2 − 1.

Claim 3: A ∩ SA = ∅.

Proof of Claim 3: Suppose otherwise, i.e. A ∩ SA 6= ∅.
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Proof of Claim 3: Suppose otherwise, i.e. A ∩ SA 6= ∅.



A ∩ SA C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

B

SA 6= ∅

S

SB 6= ∅

|S| ≤ k

wB(C) ≤
2k2 − 1

wB(C ∩ SA)
≤ k2 − 1

Clearly, wB(C ∩ SA) + wB(C ∩ SB) ≤ wB(C) ≤ 2k2 − 1.

=⇒ Either wB(C ∩ SA) ≤ k2 − 1 or wB(C ∩ SB) ≤ k2 − 1.
By symmetry, we may assume that wB(C ∩ SA) ≤ k2 − 1.

Claim 3: A ∩ SA = ∅.

Proof of Claim 3: Suppose otherwise, i.e. A ∩ SA 6= ∅.



A ∩ SA C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

B

SA 6= ∅

S

SB 6= ∅

|S| ≤ k

wB(C) ≤
2k2 − 1
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Clearly, wB(C ∩ SA) + wB(C ∩ SB) ≤ wB(C) ≤ 2k2 − 1.

=⇒ Either wB(C ∩ SA) ≤ k2 − 1 or wB(C ∩ SB) ≤ k2 − 1.
By symmetry, we may assume that wB(C ∩ SA) ≤ k2 − 1.

Claim 3: A ∩ SA = ∅.

Proof of Claim 3: Suppose otherwise, i.e. A ∩ SA 6= ∅.



Proof (cont.): Proof of Claim 3 (cont.):

A ∩ SA 6= ∅ C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

B

A′

C ′

B′

wB(C) ≤
2k2 − 1

wB(C ∩ SA)
≤ k2 − 1

|S| ≤ k

(A′,B′,C ′) is a cut-partition of G with A′ ∪ C ′ $ A ∪ C , and

wB′(C ′) = wB′(S) + wB′(C ∩ SA)
≤ k|S|+ wB(C ∩ SA)
≤ k2 + (k2 − 1) ≤ 2k2 − 1,

a contradiction to the minimality of A ∪ C . This proves Claim 3
(i.e. A ∩ SA = ∅).



Proof (cont.): Since SA 6= ∅, it follows that C ∩ SA 6= ∅.

A ∩ SA = ∅ C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

SA 6= ∅

S

SB = ∅

B

|S| ≤ k

wB(C) ≤
2k2 − 1

wB(C ∩ SA)
≤ k2 − 1

Claim 4: For all v ∈ C ∩ SA, wB(v) = k. Consequently,
wB(C ∩ SA) = k|C ∩ SA|.

Proof of Claim 4: Fix v ∈ C ∩ SA. By the definition of wB(v), it
suffices to show that dB(v) > wB(v).



Proof (cont.): Since SA 6= ∅, it follows that C ∩ SA 6= ∅.

A ∩ SA = ∅ C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

SA 6= ∅

S

SB = ∅

v

B

|S| ≤ k

wB(C) ≤
2k2 − 1

wB(C ∩ SA)
≤ k2 − 1

Claim 4: For all v ∈ C ∩ SA, wB(v) = k. Consequently,
wB(C ∩ SA) = k|C ∩ SA|.

Proof of Claim 4: Fix v ∈ C ∩ SA. By the definition of wB(v), it
suffices to show that dB(v) > wB(v).



Proof (cont.): Since SA 6= ∅, it follows that C ∩ SA 6= ∅.

A ∩ SA = ∅ C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

SA 6= ∅

S

SB = ∅

v

B

|S| ≤ k

wB(C) ≤
2k2 − 1
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≤ k2 − 1

Claim 4: For all v ∈ C ∩ SA, wB(v) = k. Consequently,
wB(C ∩ SA) = k|C ∩ SA|.

Proof of Claim 4: Fix v ∈ C ∩ SA. By the definition of wB(v), it
suffices to show that dB(v) > wB(v).



Proof (cont.): Proof of Claim 4 (cont.): Recall: We need to show
that dB(v) > wB(v).

A ∩ SA = ∅ C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

SA 6= ∅

S

SB = ∅

v

B

|S| ≤ k

wB(C) ≤
2k2 − 1

wB(C ∩ SA)
≤ k2 − 1

2k2 ≤ δ(G) ≤ degG(v) ≤ |(C ∩ SA) \ {v}|+ |S|+ dB(v)
≤ wB((C ∩ SA) \ {v}) + |S|+ dB(v)
≤ wB(C ∩ SA)− wB(v) + |S|+ dB(v)
≤ (k2 − 1)− wB(v) + k + dB(v).



Proof (cont.): Proof of Claim 4 (cont.): Recall: We need to show
that dB(v) > wB(v).

A ∩ SA = ∅ C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

SA 6= ∅

S

SB = ∅

v

B

|S| ≤ k

wB(C) ≤
2k2 − 1

wB(C ∩ SA)
≤ k2 − 1

=⇒ 2k2 ≤ (k2 − 1)− wB(v) + k + dB(v)

=⇒ dB(v) ≥ wB(v) + k2 − k + 1 > wB(v)

This proves Claim 4 (in particular, wB(C ∩ SA) = k|C ∩ SA|).



Proof (cont.): Proof of Claim 4 (cont.): Recall: We need to show
that dB(v) > wB(v).

A ∩ SA = ∅ C ∩ SA

A ∩ S C ∩ S

A ∩ SB C ∩ SB

SA 6= ∅

S

SB = ∅

v

B

|S| ≤ k

wB(C) ≤
2k2 − 1

wB(C ∩ SA)
≤ k2 − 1

=⇒ 2k2 ≤ (k2 − 1)− wB(v) + k + dB(v)

=⇒ dB(v) ≥ wB(v) + k2 − k + 1 > wB(v)

This proves Claim 4 (in particular, wB(C ∩ SA) = k|C ∩ SA|).



Proof (cont.):

A ∩ SA = ∅ C ∩ SA 6= ∅

A ∩ S C ∩ S

A ∩ SB C ∩ SB

B

SA 6= ∅

S

SB 6= ∅

wB(C ∩ SA)
= k|C ∩ SA|

|S| ≤ k

wB(C) ≤

wB(C ∩ SA)
≤ k2 − 1

2k2 − 1

Claim 5: A ∩ SB 6= ∅.

Proof of Claim 5:

|C \ SA| ≤ wB(C \ SA)
≤ wB(C)− wB(C ∩ SA)
≤ (2k2 − 1)− k|C ∩ SA|

|C | ≤ |C \ SA|+ |C ∩ SA|
≤ (2k2 − 1)− (k − 1)|C ∩ SA|



Proof (cont.): Proof of Claim 5 (cont.): Recall that
|C | ≤ (2k2 − 1)− (k − 1)|C ∩ SA|.

Recall: We need to show that A ∩ SB 6= ∅. Suppose otherwise, i.e.
A ∩ SB = ∅. Fix a ∈ A (=⇒ a ∈ A ∩ S).

A ∩ SA = ∅ C ∩ SA 6= ∅

A ∩ S C ∩ S

A ∩ SB C ∩ SB

B

SA 6= ∅

S

SB 6= ∅

wB(C ∩ SA)
= k|C ∩ SA|

|S| ≤ k

wB(C) ≤

wB(C ∩ SA)
≤ k2 − 1

2k2 − 1

degG(a) ≤ |(S ∪ C) \ {a}| ≤ |S \ {a}|+ |C |
≤ (k − 1) + (2k2 − 1)− (k − 1)|C ∩ SA|
= (2k2 − 1)− (k − 1)(|C ∩ SA| − 1)
≤ 2k2 − 1 < δ(G),

a contradiction. This proves Claim 5 (i.e. A ∩ SB 6= ∅).
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wB(C ∩ SA)
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2k2 − 1

A′

C ′

B′

Our goal is to show that (A′,B′,C ′) contradicts the choice of
(A,B,C).
For this, we need to show that:

1 A′ ∪ C ′ $ A ∪ C ;

This follows from the fact that C ∩ SA 6= ∅

2 wB′(C ′) ≤ 2k2 − 1.

Since wB(C) ≤ 2k2 − 1, it suffices to show that
wB′ (C ′) ≤ wB(C).
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Theorem 1’ [P., Thomassé, Trotignon, 2016]
Let k ∈ N+, and let G be a graph. Then at least one of the
following holds:
(a) G is (k + 1)-connected;
(b) G admits a cut-partition (A,B,C) s.t. G [A ∪ C ] is

(k + 1)-connected and |C | ≤ 2k2 − 1;
(c) G contains a vertex of degree at most 2k2 − 1.

A 6= ∅ B 6= ∅C

GG[A ∪ C] is
(k + 1)-connected

|C| ≤ 2k2 − 1

For k = 2, the optimal bound is 5 (rather than 2k2 − 1 = 7).

The proof is completely different from that of Theorem 1’, and
it does not (seem to) generalize to higher values of k.
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Theorem [Alon, Kleitman, Saks, Seymour, Thomassen, 1987]
Let k, c ∈ N+. Then every graph of chromatic number greater
than max{c + 10k2 + 1, 100k3} has a (k + 1)-connected induced
subgraph of chromatic number greater than c.

Theorem [Chudnovsky, P., Scott, Trotignon, 2013]
Let k, c ∈ N+. Then every graph of chromatic number greater
than max{c + 2k2, 2k2 + k} has a (k + 1)-connected induced
subgraph of chromatic number greater than c.

Theorem 2 [P., Thomassé, Trotignon, 2016]
Let k, c ∈ N+. Then every graph of chromatic number greater
than max{c + 2k − 2, 2k2} has a (k + 1)-connected induced
subgraph of chromatic number greater than c.



That’s all.

Thanks for listening!
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